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ABSTRACT. The localization of large strains in very thin bands, smeared view of fractures, is associated with the 
minimization of a two-field functional similar to that proposed by Bourdin-Francfort-Marigo (2000). Here, we 
consider that fractures may be different-in-kind because of the material microstructure which, once loosened, 
allows to accommodate only a particular class of inelastic deformations (e.g., dilatation, slipping, cavitation). By 
varying the form of such class in the corresponding variational problem, various responses can be captured 
incorporating the idea of cleavage, deviatoric, combined cleavage-deviatoric and masonry-like fractures. The 
model is numerically implemented using a standard finite-element discretization, adopting an alternate 
minimization algorithm with an inequality constraint to impose crack irreversibility.  
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INTRODUCTION 
 

n continuum mechanics the formation of fractures is naturally associated with discontinuities in the deformation 
field. This gives two main difficulties: on the one hand, the continuum description becomes complicated because the 
deformation is not differentiable in the classical sense; on the other hand, the location of the discontinuity points is 

unknown a priori, hence the mathematical classification of free-discontinuity problems. In a fundamental paper [1], Francfort 
and Marigo first introduced a variational approach to fractures through the minimization of a strain energy functional, 
composed of a bulk and a surface energy term à la Griffith, adding proper constraints to impose that fractures are 
irreversible. The variational problem is set in a suitable class of functions for the deformation field which allows for 
discontinuity points, so that the location of the cracks is not given a priori but directly deduced from energy minimization. 
Later on the same authors, together with Bourdin [2], proposed a variational approximation of the free-discontinuity 
problem with a regularized two field functional, where one field is representative of the macroscopic displacement in the 
body, while the other one, say s, plays the role of a damage parameter varying between 0 and 1 (s = 0 in a fractured zone 
and s =1 away from it), associated with the macroscopic decay of the material elastic moduli. This formulation leads to a 
pseudo spatial-dependent theory since it allows for spatial gradients of the damage parameter to affect the value of the 
stored energy functional. In the regularized approach fracture is not sharp, but represented by the occurrence of very large 
strains in very thin bands. The relationship with the parent free discontinuity problem is mathematically justified through a 
particular type of variational convergence referred to as -convergence [3]: by extending a result for the Munford-Shah 
functional in problems of image-segmentation [4], it was proved in [2] for the case of antiplane shear that as a 
characteristic parameter goes to zero, the regularized functional -converges to the Griffith-like functional of [1], i.e., the 
strain peak converges to a sharp discontinuity.  Many other contributions have been proposed since then and the reader is 
referred to [5] for an updated survey of the relevant Literature. 
In a more technical language [6], the model of [1] is in the class of fixed-crack formulations, because the position and 
orientation of a crack cannot be modified during the loading history. In addition to this characterization, the model of [2] 
can be considered a smeared crack formulation, because the occurrence of individual cracks is represented, rather than by 
discontinuities of the displacement field, by the localization of very large strains in thin bands. This process is driven by a 
localized material weakening interpreted by the damage parameter s.  
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We take this view and consider the formulation of [2] as an autonomous smeared fixed-crack model, governed by a pseudo-
spatial-dependent nucleation of damage; maintaining the same variational structure of [2], we develop such formulation 
towards a general crack model for brittle and quasi-brittle materials. In particular, to reproduce typical responses such as 
the strain-softening, it is well known the convenience of decomposing the strain into a part that belongs to the crack and 
into a part that belongs to the material (decomposed-strain) [6]. Here, we enrich the formulation of [2] with the possibility of 
considering particular inelastic deformations, associated with microstructural transformations localized in the damaged 
regions. 
In words, when the material is damaged, its microstructure is loosened and, because of this, at the macroscopic level 
various types of inelastic strain become permitted in the representative volume element. The form of such a strain 
represents a peculiarity of the kind of material-microstructure under consideration. An effective tool to account for this 
possibility in the variational framework of the proposed approach is represented by Del Piero and Owen’ Structured 
Deformations Theory [7]. This theory naturally decomposes the macroscopic deformation into two parts: one associated with 
a bulk distortion, the other one with those phenomena occurring at a lower length-scale, e.g., micro-slips, micro-cavitation 
etc. (the second contribution is usually referred to as the structured part of the deformation). We take into account various 
possible scenarios by considering, in the corresponding variational formulation, different classes of admissible functions 
to represent the structured part of the deformation. Assuming different classes, different-in-type responses can be 
captured, incorporating for example the ideas of cleavage, deviatoric, combined cleavage-deviatoric and masonry-like 
fractures. 
More in particular, one may suppose that the structured part of the strain is represented by any symmetric tensor: this 
gives the cleavage-like fracture model discussed in Section Cleavage fractures. On the other hand, if the material 
microstructure is such that the work necessary to produce volume changes in the damaged material is much higher than 
that required for shear distortions, the structured part of the strain is a traceless (deviatoric) tensor: this assumption 
produces the deviatoric-like (mode II) fracture model of Section Deviatoric fractures. The resulting formulation is identical to 
that proposed in [2], for the case of cleavage-like fractures, and to that of [8] for the case of deviatoric fractures, 
respectively. In all these cases, an energetic competition is engaged between the release of elastic bulk energy and the 
energy necessary to produce new crack surface and, although the model takes a smeared view of the cracking 
phenomenon, this gives rise to strain localization in thin bands. Both these models are symmetric under tension and 
compression, in the sense that by reversing the sign of the external actions the crack pattern does not change, although 
the sign of the corresponding displacement field changes. In general, material interpenetration is not avoided, but it is at 
least partially mitigated in the deviatoric fracture model of the type of [8]. 
To overcome the somehow unrealistic symmetry under tension-compression, a combination of the two aforementioned 
models is also introduced, accounting for cleavage-like fractures under tension and deviatoric-like fractures under 
compression. This model, presented in Section Combined cleavage-deviatoric fractures, was obtained independently in [5] and in 
[9], even if from different viewpoints and with diverse purposes. Also in this case, material interpenetration is mitigated 
but not definitely ruled out. 
 A formulation that rigorously avoids material interpenetration can be obtained by imposing that the structured part of the 
deformation is represented by a symmetric positive-semidefinite tensor. This means that only inelastic dilatations due to 
micro-crack openings are permitted when the material microstructure is loosened. Remarkably, the variational approach 
allows to directly derive that this case, as discussed in Section Masonry-like fractures, is consistent with the constitutive 
equations for a classical masonry-like materials defined in [10], i.e., the stress tensor is negative semi-definite, coaxial and 
orthogonal to the structured strain. However, in the present approach, a certain mechanical work has to be consumed to 
open a crack, so that localized rather than smeared fractures are energetically favourable. Material interpenetration is now 
successfully avoided by the assumed properties of the structured part of the deformation. 
The four models here presented are discussed and compared for the case of a prismatic solid under plane strain in a 
uniaxial tension or compression test. This is of interest because the prism may simultaneously undergo different-in-type 
fractures. In any case, the approach is feasible of further specialization. Just changing the form of the class of allowable 
structured strain, various other models, interpreting the most various responses, can be directly obtained. 
 
 
THE GENERAL MODEL 
 

f  = 2÷3, is the dimension of the Euclidean space where the problem is set, let  denote the undistorted 

natural reference configuration of the body  for which the reference frame {O, x1, …,  x} has been defined by the I 
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orthogonal base of unit vectors {e1, … , e}. The mapping y(x):    is the deformation so that u(x) = y(x)  x is the 

displacement of x. 
 
Structured deformation of the damaged continuum 
Under assigned actions the body  may damage and eventually fracture. The resulting deformation is thus the 
consequence of two causes: the opening of micro- or macro-cracks (structured part of the deformation [7]) and the 
distortion of the elastically bent lamellae delimited by the crack surfaces (elastic part of the deformation). We take a smeared 
view of the phenomenon so that the corresponding strain fields can be considered continuous and regular in the 
representative volume element (RVE). Under the hypothesis of infinitesimal deformations, the global strain is the 
symmetric gradient of the displacement field, i.e.,   / 2s T    u u u , for which we assume a decomposition of the form 
  

( ) ( ) ( )s
e s  u x E x E x           (2.1) 

 

where Ee(x) and Es(x) denote the elastic and structured part of the strain, respectively. We further assume that an internal 

state variable s(x):   [0,1]   is defined that represents a damage parameter that takes the 1 value in a sound zone and 

the 0 value in a completely damaged (fractured) zone. The significance of s is defined by the relation 
 

 ( ) [1 ( )] ( )s cs E x x E x           (2.2) 
 

where Ec(x) represents the (structured) part of the deformation that would develop in a neighborhood of the particle x if, 
here, the material was completely damaged, i. e., s(x)= 0. Obviously, s = 0 (s = 1) implies Es= Ec (Es= 0), while s taking an 
intermediate value between 0 and 1 means that the material is not completely damaged and, consequently, cannot attain 
the whole structured strain Ec that would be available in a completely disgregated RVE. 

The energy 
Let l represent the characteristic material length scale, i.e., the characteristic width of the process-zone band associated 
with the phenomenon of crack coalescence [11]. Under isothermal evolution the strain energy depends upon the 
displacement field u(x), the damage field s(x) and the structured deformation field Ec(x) according to a relationship of the 
type 
 

 [ , , ] ( , , ) ( )s
l c c ls s d s d

 
      u E u E x x         (2.3) 

 

where [su,s,Ec] denotes the bulk part of the energy, whereas l(s) is the surface part, which is supposed to depend upon 
the damage variable s and on the intrinsic material length scale l [11]. 
For the reasons explained at length in [8], we take for l(s) the expression 
 

 
2

2 (1 )
( )

2l

s
s l s

l

  
    

 
          (2.4) 

 

where  is a parameter representative of the material fracture energy, which guarantees that the width of the bands where 
the strain localizes is of the same order of l.  
The bulk energy is associated with the elastic part of the energy stored in the elastically deformed lamellae comprised 

among the microcracks. If : SymSym denotes the elasticity tensor of the sound material, then   

(su,s,Ec) = ½[ Ee] Ee  
 

where Ee is defined from (2.1) and (2.2). In general, if a fractured body is conveniently constrained, then the sound 
portions are sufficient to maintain the various pieces together. More precisely, suppose that in a small neighborhood 
(x)   of x, of the same order of the RVE, the body is completely damaged (s(x) = 0). Let H be any constant second-
order tensor and consider the problem in which the boundary (x) of (x) is subjected to the Dirichlet condition 
u(x) = Hx, x(x). Then, we define the relaxed bulk energy density through the expression 
 

 **

,
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where V() denotes the measure of , whereas S represents the admissible class for the structured part of the strain, 
which depends upon material properties. It should be noticed that, in general, (2.5) uniquely defines the tensor Ec = Ec

** 

associated with the local value of the strain su. We emphasize this dependence through the notation Ec
** = (su), 

indicating that the function : SymSym associates with the local strain su the unique minimizer Ec**of (2.5). One can 
show that in the case of a linear elastic material, the problem (2.5) is indeed well posed because of the convexity of the 
elastic strain energy.  
When s  0, according to the assumed definition (2.2), one defines from (2.5) the relaxed bulk energy 
**(su,s) = (su,s, (su) ). Consequently, **(su,s)  takes the form 
 

   ** 1
( , ) (1 ) ( ) (1 ) ( )

2
s s s s ss s s             u u Θ u u Θ u�       (2.6) 

 

In conclusion, we will consider the relaxed minimization problem defined by 
 

 ** ** **

( , )
min ( , ) , ( , ) ( , ) ( )s

l l l
s

s s s d s d


 

       u
u u u x x



       (2.7) 

 

where **( , )l s u denotes the relaxed bulk energy defined by (2.4) and (2.6), whereas   represents the class of admissible 

functions (u,s) defined according to the specific conditions for the fields u(x) and s(x) on the boundary  of . Further 
conditions upon the minimization problem similar to those of [2] have to be added in order to consider irreversibility of 
damage. In a load history when the boundary data vary with the time t, the equilibrium state of the body are found 
through a sequence of minimization problems of the type (2.7), each one corresponding to a small increment of the 
boundary data, for which we impose that the value of s can never decrease in time.  
 
 
PARTICULAR CASES 
 

ifferent in type models can be obtained by considering various forms for the class S of admissible structured 
deformation in (2.5). For the sake of briefness, in the following we only report the most important results. 
 

 
Cleavage fractures 
The simplest case is that in which S  Sym. Then, from (2.5) one finds that Ec

** = su so that (2.6) reads 
 

  ** 21 1
( , ) (1 ) (1 ) [ ]

2 2
s s s s s s ss s s s                u u u u u u u� �     (3.1) 

 

Observe, in passing, that for this case one obtains for **( , )l s u of (2.7) an expression which is substantially similar to  
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2 21 (1 )
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2 2
BFM s s
l l

s
s s k d l s d

l 

  
        

 
 u u u x x      (3.2) 

 

proposed by Bourdin-Francfort and Marigo [2] as a regularization of the variational formulation of Griffith’s theory of [1]. 
The difference consists in the parameter kl of (3.2), infinitesimal of higher order than l, which was introduced in [2] for 
numerical purposes but that is here irrelevant for the comparison. This model is capable to reproduce cleavage fractures, 
but it is symmetric in tension and compression and consequently, in general, it cannot avoid material interpenetration. 
 
Deviatoric fractures 
Let us now suppose that S is the class of deviatoric, traceless, second order tensors. Having set (su)sph = I trsu /trI and 
(su)dev = su  (su)sph, after some calculations we obtain from (2.5) that Ec

** = (su)dev, so that the relaxed bulk energy 
thus takes the form 
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It is worth noticing that **( , )l s u of (2.7) assumes for this case an expression identical (modulo the parameter kl) to  
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 
2

2 21 (1 )
[ , ] [( ) ] ( ) ( ) [( ) ] ( ) | |

2 2
LR s s s s
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s
s s k d l s d

l 

  
             

 
 u u u u u x x      (3.4) 

 

proposed in [8] to incorporate the idea of less brittle, “deviatoric-like” fractures.  
 
Combined cleavage-deviatoric fractures 
The models of Sections Cleavage fractures and Deviatoric fractures are symmetric in tension-compression, i.e., by reversing the 
sign of the boundary data one obtains exactly the same crack pattern. But experiments suggest that material response may 
be remarkably different in tension or compression. Consequently, one can decide to adopt the cleavage fracture model of 
(3.1) whenever the hydrostatic part (su)sph of the strain su is non-negative and the deviatoric fracture model of (3.3) 
when (su)sph < 0. Reasoning as in Sections Cleavage fractures and Deviatoric fractures, one obtains for **(su,s) the 
expression 
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    (3.5) 

 

For the isotropic-elasticity case, a similar model has been recently obtained independently by Amor-Marigo and Maurini 
[5], who proposed for the energy the expression 
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    (3.6) 

 

where 0 and  are the bulk and shear elastic moduli, while tr(su) = min{ tr(su),0} and tr+(su) = max{ tr(su),0}. 
 
Masonry-like fractures 
Let us denote by Sym+ and Sym the set of all positive semidefinite and negative semidefinite symmetric tensors, 
respectively. The case at hand is characterized by the choice S  Sym+ in (2.5). The detailed derivation of the function 
Ec

** = (su) from the minimization problem (2.5) is not reported here, but we simply recall the final results. 

If E  su(x), having set T**:=[E Ec
**], one finds that i) Ec

**  Sym+; ii) T** Sym; iii) E = -1[T**] +  Ec
**; iv) T** 

Ec
** = 0. These conditions imply that T** and Ec** are coaxial. Moreover, in the case of isotropic elasticity when  = 2 

+ II, being  and  the Lamé’s elastic constants, then v) also E is coaxial with T**and Ec**. If one establishes a 
correspondence between the tensor T** and the Cauchy stress in completely damaged body (s = 0), these conditions 
coincide with the definition of the constitutive equations for a classical linear elastic masonry like material, formulated in 
[10]. For any E Sym the aforementioned equations uniquely define the associated structured strain Ec**.  

Using the property iv), that is, [su (su)] (su) = 0, one finds that (2.6) can be written in the equivalent forms 
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    (3.7) 

 

The corresponding energy functional **( , )l s u  results from (2.7). It can also be verified that the Cauchy stress T, which is 

dual in energy with respect to the strain su, reads 
 
 

   
2 2 2(1 ) [ ( )] [ ] [ ] (1 ) [ ( )]s s s s ss s s            T u u u u u         (3.8) 

 
 

Notice that when s = 1 one finds the stress in a sound elastic material, whereas when s = 0 one obtains the expression for 
a classical masonry-like material [10]. There are however two major novelties here with respect to the classical no-tension 
theory. First, the surface-energy term (2.4) implies that the opening of fractures (i.e., s passing from 1 to 0) is associated 
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with an energy consumption; second, there may be regions where the material is only partially damaged (s between 0 and 
1). 
 
 
NUMERICAL EXPERIMENTS 
 

e consider the paradigmatic example of a uniaxial traction or compression test of a prismatic specimen. In the 

following, we assume the body is a linear elastic ( = 2 + II) isotropic material under plain strain. 

Consequently, the functional of (2.7) can be properly specialized to the 2-D case. 
 
The numerical implementation 
The model is numerically implemented following the same line of [2], adding an inequality constraint on the scalar damage 
field s similar to that of [5] to impose crack irreversibility. The adopted numerical scheme is based upon an alternate 
minimization algorithm which, in short, consists in solving a series of minimization sub-problems on u at fixed s and 
viceversa on s at fixed u up to convergence. In particular, in the cleavage and deviatoric models of Sections Cleavage fractures 
and Deviatoric fractures, the energy functionals are quadratic in u and the elastic sub-problem reduces to the solution of a 
linear system of equations. On the contrary, for the solution of the combined-cleavage-deviatoric-fractures model of 
Section Combined cleavage-Cleavage fractures, a quasi Newton algorithm is adopted because of the non-linearity induced by the 
inequality related to the trace of the spherical part of the strain as per (3.5). For the masonry-like fractures model of 
Section Masonry-like fractures, a fully Newton algorithm has been developed to obtain the equilibrium at each time step. The 
minimization on s at fixed u is reduced to the solution of an unconstrained quadratic problem coupled with an a posteriori 
projection of the solution on the set of admissible space of s to enforce the irreversibility condition of fracture. The 
models have been implemented in an appositely conceived program based upon the Open Source package deal.II [12]. 
 
Examples 
Consider the two-dimensional rectangular domain of Fig. 1, of sides d and h, which represents a section of the body at 
hand in plane strain. The element is loaded by applying a vertical displacement on the upper base 2, thus keeping equal to 
zero the horizontal component. The lower base 1 is kept fixed while the vertical borders 3 and 4 are unconstrained and 
stress free. This setup may be representative of a tensile or compressive test with un-lubricated loading platens (perfect 
adhesion due to friction). To model that the contact of the loading platens strengthens the neighbouring materials, we set 
s = 1 on 1 and 2. In summary, the boundary condition for this case are 
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        (4.1) 

 

where, as in Fig. 1, e1 and e2 are the horizontal and vertical unit vectors respectively, n is the outward normal to the 
boundary and t is the dimensionless displacement correlated with the length parameter 4105.2 u mm and T denotes 
the Cauchy stress. 
We consider the case d = 50 mm, h = 100 mm, with Young’s modulus E = 30000 N/mm2 and Poisson’s ratio ν = 0.2. 
Furthermore, the fracture toughness γ has been assumed equal to γ = 10-3 N/mm and the intrinsic length scale l = 1 mm. 
For what the discretization is concerned, we adopted a structured and homogeneous finite element mesh composed of 
80000 quadrilaterals, with in total 3x80601 degrees of freedoms. The size of the element is 510-3 d, that is 0.25 l. 
Figs 2-3, summarize the results obtained with the different models under traction (t > 0) or compression (t < 0). All cases 
are characterized by the sudden appearance of dominant cracks. In cleavage- and deviatoric-fracture models there is no 
difference between tension or compression, except in the sign of the displacement field.   
The cleavage-fracture model of (3.1) is characterized by the appearance of two horizontal cracks (Figs. 2a and 3a) close to 
the lower and upper bases; the boundary condition s =1 on 1 and 2 avoids ruptures at the constrained contours. 
Fractures start at the corners where the stress concentration occurs, progress and eventually meet approximately in the 
middle of the specimens. Their thickness, i.e., the thickness of the strip where s  0, is of the order of l near the corners, 
but increases towards the center. Since the model is symmetric in tension and compression, there is no difference between 
Figs. 2a (traction) and 3a (compression). Obviously, material compenetration due to crack lips overlapping is not avoided 
under compression (Fig. 3a).  
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Figure 1: Section of the body in plain strain subjected to uniaxial test. 

 
In the deviatoric-fracture model of (3.3), cracks start again at the specimen corners and propagate towards the center at an 
angle of approximately /4 with respect to the horizontal. The model is again symmetric under traction and compression, 
presenting equal maps for the damage field. To better illustrate crack propagation, Figs. 2b and 3b represent two different 
stages of the load history that, even though corresponding to tension and compression tests, respectively, for the 
aforementioned symmetry can be considered associated with the same test.  At first, two triangular wedges, with bases 
coinciding with 1 and 2, are isolated (Fig. 2b). At this stage, a very small shear stress occurs in the middle of specimen, 
so that various loading steps are necessary to produce a very slow widening and propagation of cracks through a gently 
curved shear path, tending to separate the prism into four pieces (Fig. 3b). Notice that the model allows only for the slip 
and not for the opening of crack lips: consequently, the three pieces of Fig. 2b cannot separate, even if the prism is pulled. 
Moreover, in general the thickness of shear bands is higher than that of cleavage fractures, a phenomenon already 
observed in [5] and justified by the high residual stiffness of the model and bad numerical conditioning.  
 

 
(a) (b) (c) (d)  

Figure 2: Uniaxial traction test (t > 0). Maps of s for different models: a) cleavage fracture;  
b) deviatoric-fracture at first loading steps; c) combined cleavage-deviatoric fracture; d) masonry-like fracture. 

 
The combined cleavage-deviatoric fracture model of (3.5) presents under traction a crack pattern equal to that of the 
cleavage model (Fig. 2c), but under compression a typical hour-glass failure appears (Fig. 3c). The pseudo-vertical fracture 
in the middle of the specimen is a cleavage fracture provoked by the wedging action of the triangular material portions in 
proximity of the bases isolated by shear bands, a mechanism not allowed in the deviatoric-fracture model. Notice that also 
now the thickness of the shear bands is greater than the thickness of the cleavage fracture.  
The masonry-like fracture model of (3.7) presents under tension horizontal fractures (Fig. 2d), again analogous to those 
predicted by the cleavage model. Under compression (Fig. 3d), pseudo-vertical fractures occur, which again do not reach 
the prism’s bases 1 and 2, because, here, the material is bi-axially compressed due to the confining effect. More in 
particular, fractures under compression manifest in two successive steps. First, the central vertical fracture appears; 
second, two new vertical cracks are nucleated symmetrically with respect to the prism axis (Fig. 3d). After this, the 
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simulation shows numerical instability. Experiments on quasi-brittle materials like geomaterials or ceramics confirm that 
cracks appear in a similar way, but failure is due to a second order effect, i.e., the instability of material columns comprised 
between fractures, that our model cannot reproduce.  
 

 
(a) (b) (c) (d)  

Figure 3: Uniaxial compression test (t < 0). Maps of s for different models: a) cleavage fracture; 
b) deviatoric-fracture at last loading steps; c) combined cleavage-deviatoric fracture; d) masonry-like fracture. 

 

 
Figure 4: Uniaxial experiment: total-, bulk- and surface-energy diagrams as a function of t. a) Graphs for the  
cleavage-fracture model under traction t ≥ 0 or compression t ≤ 0 (in this case t is in absolute value) and for  

combined cleavage-deviatoric fracture model and the masonry-like fracture model under traction (t ≥ 0). b) Deviatoric  
fracture model under traction (t ≥ 0); the graph for the deviatoric-fracture model under compression (t ≤ 0) is symmetrically identical. 
 
The corresponding graphs of the total, bulk and surface energies are reported in Figs. 4 and 5 as a function of the 
dimensionless displacement t. Due to the energetic symmetries already discussed in Section Examples, Fig. 4a refers to four 
cases: cleavage fracture model under traction or compression (in this case t should be replaced by its absolute value); 
combined cleavage-deviatoric fracture model under traction; masonry-like fracture model under traction. Besides, Fig. 4b 
corresponds to the deviatoric fracture model under traction (t ≥ 0) or compression (t ≤ 0), with t identified with its 
absolute value. Notice the marked jumps in the total energy graphs similar to those observed, for the case of the elastic 
matrix with inclusion, in [5]. We agree with the conclusions of [13] and [5] that such discontinuities correspond to jumps 
from one local equilibrium configuration to another associated with a lower energetic level. The formation of a main 
fracture is evidenced by a sharp transformation of the bulk energy into surface energy. In general, the response is “stiffer” 
in the deviatoric-fracture model that in the cleavage fracture model.  
Fig. 5 represents the energy graphs for the combined cleavage-deviatoric and the masonry-like fracture model for the uni-
axial compression tests, for both of which the tensile case is represented by Fig. 4a. Also here we notice that the energy 
thresholds that are attained under compression are much higher than in tension, with a difference of at least one order of 
magnitude for the masonry like model. In particular, the graphs of Fig. 5b apparently do not indicate a visible transfer of 
energy from the bulk to the surface part of the energy. As a matter of fact, a magnification of the graphs in a 
neighbourhood of the points where the pseudo-vertical cracks of Fig. 3d appear would evidence a phenomenon of this 
kind, but the amount of energy that is involved is so much less than corresponding total energy level that such a 
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phenomenon cannot be appreciated at the scale of resolution of Fig. 5b. In conclusion, the masonry-like model naturally 
furnishes an interpretation of the well known evidence that brittle and quasi-brittle materials usually present strengths 
much higher in compression than in tension. 
 

 
Figure 5: Uniaxial experiment under compression (t ≤ 0): energy diagram for a) combined  

cleavage-deviatoric and b) masonry-like fracture models. 
 
 
CONCLUSIONS 
 

he proposed variational approach to fracture is obtained through the minimization of a two-field regularized 
functional that, with respect to other approaches, bypasses the difficulties associated with the discontinuities of 
the displacement field and the unknown crack location (free discontinuity problem). Fracture is described by a 

regular field measuring the damage level in the representative volume element: a crack is not a discontinuity of the 
displacement field, but a loosening of the microstructure and the corresponding localized weakening of the material 
stiffness, with the localization of large strains in very narrow bands. The model is minimal since the only required material 
parameters are the elastic moduli, the fracture surface energy and the material intrinsic length scale. The latter is of 
particular importance because this formulation is a pseudo spatial-dependent theory and this parameter influences the 
width of the fracture bands. The gross response of a body may be strain-softening in type due to crack opening but, 
locally, the material is linear elastic up to fracture: consequently, the numerical implementation results mesh-independent, 
not suffering the drawbacks of models with strain-softening local constitutive equations. 
But the main novelty here is the combination of Structured Deformation Theory within the variational approach.  We 
have showed in paradigmatic examples that just changing the form of the class of admissible functions for the structured 
strain, very different types of fracture patterns can be obtained. The corresponding micromechanics of cracking may vary 
between cases referred to as cleavage, deviatoric, combined cleavage-deviatoric and masonry-like fractures. Although these 
models take a smeared view of the cracking phenomenon, here the competition between the release of elastic bulk energy 
and the energy necessary to produce new crack-surface renders fracture localization energetically more favorable than 
diffuse cracking. Moreover, the form of the structured strain can avoid material interpenetration in the damaged zone for 
the case of the masonry-like fracture model.  
Of course the potentiality of the approach is not limited to the four cases here considered. Further specializations to other 
particular material responses are allowed by consideration of other specific forms of the class of structured strains. Even if 
some aspects, in particular  the numerical implementation, still need to be improved, the regularized variational approach 
to fracture mechanics seems to be a very powerful tool, whose possibility to solve practical structural problems, as 
pursued in [8], is yet to be fully appreciated. 
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