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ABSTRACT. Four different variational models of fracture are considered. They are numerically implemented by 
means of a self-made finite element code and the crack evolution in a fiber-matrix composite body is simulated. 
The different results are compared. 
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INTRODUCTION 
 

he equilibrium problem for brittle elastic bodies was formulated in a variational format in [1]: the equilibrium 
configuration is that which minimizes an energy functional given by the sum of a bulk energy and a surface energy. 
The surface term is proportional to the area of the fracture surface, just as in Griffith's theory of fracture.  

The resulting problem is a free discontinuity problem, since the crack surface is unknown. It is numerically solved by 
making use of special finite elements such as boundary elements or extended finite elements, which account for the 
displacement discontinuities. An alternative numerical approach was followed in [2], where a regularized functional, which 
approximates the starting energy in the sense of gamma-convergence, was considered. In this functional the jump of the 
displacement field at the fracture surface is approximated by a smooth scalar field which plays the rule of a “damage” 
field, and the corresponding minimum problem is solved numerically by means of the standard finite elements method. 
The sharp fracture of the original problem is approximated by a smeared crack in the numerical model. Moreover, if a 
loading parameter is monotonically increased, the evolution problem can be taken into account by considering a further 
irreversibility condition which prevent the crack healing. This condition must be satisfied within each loading step of the 
incremental numerical scheme. 
In this paper we consider the regularized problem and formulate four models by assigning four different expression to the 
bulk term of the energy.  
i.  Nonlinear model, proposed in [3], which assumes the stored energy density of an Ogden material, typical of finite 

elasticity, in the bulk term.  
ii.  Linear model, proposed in [2], where the bulk energy is a quadratic function of the displacement gradient, just as in 

infinitesimal elasticity.  
iii.  Shear model, proposed in [4], where the bulk term is split into its hydrostatic and deviatoric parts and only the deviatoric 

part is engaged in the energetic competition with the fracture term to incorporate the idea of a less brittle “deviatoric-
type” fracture. 

iv.  Linear combined model, proposed independently in [5] and [6], where the linear model is considered when the material 
volume change is positive and the shear model is considered when the volume change is negative. This last model 
reproduces cleavage fracture in tensile tests and mode II fracture in compression tests. 

The four models are numerically implemented and some simulations are performed to reproduce the fracture evolution in 
a composite body constituted by an unbreakable fiber and a breakable matrix. The results are compared. 
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THE MODELS  
 

our different variational models are considered which differ only for the shape of the bulk term in the energy 
functional. The four energies are described in the following. 
  

 
The non-linear model [3] 
The first energetic functional to be considered is  

            2 22 1
, 1

2nl nlB B
E f s s x k W f x dx s x s x dx

 


        
      (1) 

where the first integral represents the bulk energy and the second integral is the fracture energy.  The functional 
unknowns are the deformation field f and the fracture field s, and they are defined in suitable Sobolev spaces. The field s 
takes values close to 0 near the crack and close to 1 away from it. The coefficient  is the fracture toughness and  is a 
mathematical term such that, when it goes to zero, the regularized problem converges to the Griffith-like problem studied 
in [1]. We refer to [3] for details on the convergence questions. The term has a physical meaning as well: it represent the 
intrinsic material length scale, measuring the thickness of the process zone [4]. The small parameter k is of order o() and 
was introduced to render coercive the functional. We assign to the elastic energy density the expression  

        22 1
F 3 log  log  

2 2nlW F det F det F
                      (2) 

proposed in [8] for an isotropic, compressible neo-Hookean material [7]. The coefficients  and  are the Lamè 
coefficients. The energy density is such that  FnlW  as  0det F  and  det F  to avoid extreme deformations.  

When (1) is minimized, a competition is engaged between the first integral term, the elastic bulk strain energy, and the 
second integral, the fracture energy. The strain energy is minimized for fixed f by s = 0, while the fracture energy is 
minimized by s=1. But the transition from s = 1 to s = 0 is associated with a s which is penalized by the first term in the 
second integral, which represents an interface energetic term. 
 

The linear model [2] 
The second energetic functional, proposed in [2], assumes that the strain energy density  is a quadratic form of the 
displacement gradient, like in the theory of infinitesimal elasticity. The energy for an isotropic material is 
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where u is the displacement field. We notice that , and thus both in a tension test and in a 
compression test, which differ only for the displacement sign, the fracture field is the same. Moreover, there is no control 
on the volume change and phenomena of interpenetration can occur.  
 

The shear model [4] 
The third functional, introduced in [4], is 
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where Wdev and Wsph are the deviatoric and spherical parts of the strain energy density of a linearly elastic isotropic material, 
that is, 

       2 2 21
 ,     

3 3 2dev sphW u sym u divu W u divu
            

   
                          (5) 

If the functional (4) is minimized, only the deviatoric part of the strain energy is engaged in the energetic competition with 
the fracture term since only the deviatoric part multiplies the fracture field s, while the hydrostatic part is unaffected by the 
fracture. As a result, only the deviatoric deformation is associated with the fracture: micro-fractured shear bands forms 
and coalesce in mode II cracks, according to the von Mises-Hencky-Huber criterion of local failure. The modification in 
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(4) is possible since the deviatoric and spherical parts of the strain energy decompose additively. Such a decomposition is 
not possible if finite elasticity is considered like in the functional (1). This functional is symmetric:    , ,s sE u s E u s  . 
 

The combined model [5,6] 
This last functional [5,6] combines the functionals (3) and (4) as follows: 
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    (7) 

 

It assumes different bulk energies, depending on the sign of the material volume change. If the volume change is positive, 
that is, the material expands like in a traction test, then the energy functional has the expression (3) which accounts for 
cleavage cracks. Differently, if the material reduces its volume like in a compression test, the energy has the form (4), 
which is tailored to predict mode II cracks. It follows a different material behavior under traction and compression. 
Moreover, if the crack opens under compression, the cracked zone preserves elastic sources due to the spherical strain 
energy unaffected by the fracture. It was proved in [5] that, if the functional (6) is assumed, material interpenetration is 
avoided in the limit case 0  . 
 
The numerical scheme for the evolutionary problem 
The functionals (1), (3), (4) and (6) are numerically minimized by means of a self-made finite element code developed in 
Matlab. Triangular elements with linear shape functions are used. The minimization is performed through an iterative 
scheme which, at each step, minimizes the functional in two times: it looks for the minimizing displacement, keeping the 
fracture fixed, and then for the minimizing fracture, for fixed displacement (see [2- 5] for the details).  
The evolutionary problem is numerically solved as follows. On the body boundary portion uB is assigned the 
displacement 
 

   , ,        uu x t tu x on B   
 

with u an assigned displacement and (0, )finalt t a loading parameter, improperly called time, which is increased in a 

discrete way. Let t be the loading increment at each time step. At each increment of the assigned displacement the 
irreversibility condition 
 

( , ) ( , )s x t t s x t   
 

must be satisfied to prevent crack healing. 
The numerical code includes a mesh refinement which automatically subdivides into sub-elements those elements at 
which the values of s become smaller than a given threshold (s=0.8 in the following simulations). 
 
 
SIMULATIONS 
 

he mechanical behavior of specimens constituted by an elastic unbreakable fiber surrounded by a breakable matrix 
is reproduced. Both compression and traction tests are performed. The above four models are implemented and 
their results are compared. The hypothesis of plane strain state is assumed. 
 

Geometry and material properties 
The geometry is represented in Fig. 1. The boundary conditions are 
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with T the stress tensor and n the outward normal tensor. The material properties are defined per unit thickness. The 
matrix is characterized by 62.2 10 /N cm    , 410 N  , and the fiber by 63.3 10 /N cm    ,    
(unbreakable). 

 
 

Figure 1: Geometry. 

Moreover, we assign 110  cm  and 210k
 .  

 
Numerical results 
In Fig. 2 the fracture energy (dark gray line), the bulk energy (light gray line) and the total energy (black line) of the matrix 
are plotted as a function of the vertical displacement t imposed on the upper side of the specimen. The values of t are 
positive in a traction test and negative in a compression one. The solid lines in Fig. 2 correspond to the nonlinear model, 
the dashed lines to the linear model (considered only in the traction test) and the dotted lines to the shear model 
(considered only in the compression test). Only the traction and compression tests are considered  for the linear and shear 
models respectively, because they are symmetric (see Sects. The linear model, The shear model). Since in a traction test 

  0, divu x x  , the combined model coincides with the linear model for 0t  . On the contrary, since in a compression 

test   0, divu x x  , then the combined model coincides with the shear model for 0t  . Thus the dashed and dotted 

curves are also that of the combined model. 
Let us analyze the results given by the nonlinear model. First of all we notice a completely different behavior under 
tension and under compression. In a traction test, the crack evolves as follows. First, three cracks form, two on the left 
side and one on the right side, as shown in Fig. 3.1. When they open, the bulk and fracture energies take a first jump. 
Then a fourth crack opens on the right side as depicted in Fig. 3.2. Its formation corresponds to the second energies 
jump. Finally a fifth crack appears at t = 0.45 on the right side (Fig. 3.3). The fractures are about equidistant in the 
longitudinal direction and alternates their position on the right and left sides. It follows that the final cracked 
configuration is that represented in Fig. 5.1: the specimen is stretched and the central fiber assumes the shape of a snake, 
whose bending concavity is opposite to the crack position (a crack on the left produces a bending whose concavity is 
oriented on the right, and vice versa). In a compression test, first a diffuse crashed area forms in the middle of the right 
string (Fig. 4.1) at t = -0.28, and then two further crashed areas appear on the left side (Fig. 4.2). The first and the second 
crack openings occur at values of t very close each other which corresponds to the jumps in the energies curves. The 
specimen exhibits a smaller resistance to compression than to tension. It is due to the fact that a buckling phenomenon 
takes place in the compression test as shown by the deformed configuration of Fig. 5.2. 
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Figure 2: Energies versus t. 

Figure 3: Nonlinear model. Fracture field in a traction test. 

Figure 4: Nonlinear model. Fracture field in a compression test. 

 
 

Figure 5: Nonlinear model.  
Actual configuration at t=0.45 (traction test) and t=-0.30 (compression test). 
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For the combined linear model the fracture fields under compression and traction are plotted in Fig. 6.  Only three 
fractures open in both the two cases. The crack regions are wider in compression than in traction. It is due to the fact that 
sloped shear fractures open under compression (in this case the combined model coincides with the shear model). 
However they are not evident in Fig. 6.1 since the matrix strips are too narrow. The cracks produce the expulsion of 
material. On the contrary, thinner cuts due to cleavage fractures form under traction (in this case the combined model 
coincides with the linear model). If the energies curves of Fig. 2 are compared, we notice that the combined model 
overestimates the material strength in tension since it does not penalize the spherical stain energy, and it underestimates 
the material sources under traction. 
 

 
 

Figure 6: Linear combined model. Fracture field. 
 

 
Figure 7: Linear combined model. Actual configuration at t=-0.45 and t=0.45. 

 
 

CONCLUSION 
 

our different numerical models for fracture are tested by comparing their predictions on the breaking of a fiber-
matrix composite body. The combined model joins the capabilities of the linear and shear models, by accounting 
for both mode I and mode II fracture. It predicts cleavage fracture when the material is compressed and shear 

fracture when it is stretched. However it does not solve the problem of material interpenetration which occurs when shear 
and compression deformations coexist. The nonlinear model forbids material interpenetration by introducing a suitable 
energetic barrier, and it predicts  not-symmetric behaviors as well. However it requires a greater computational effort in 
terms of code complexity and computing time. 
The combined model is suitable for quasi-brittle materials, which exhibit shear fracture mechanisms and have large 
strength sources due to micro-grain friction under compression. The nonlinear model, on the other hand, is suitable for 
ductile materials which undergo large deformations before they break. 
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