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ABSTRACT. The present paper is concerned with the use of the Modified Wöhler Curve Method to estimate 
fatigue lifetime of thin welded joints of both steel and aluminium subjected to in-phase and out-of-phase 
multiaxial fatigue loading. The most important peculiarity of the above multiaxial fatigue criterion is that it can 
be applied by performing the stress analysis in terms of both nominal and local quantities, where in the latter 
case the relevant stress state at the assumed critical locations can be estimated according to either the reference 
radius concept or the Theory of Critical Distances. The accuracy and reliability of our multiaxial fatigue criterion 
was systematically checked through several experimental results taken from the literature and generated by 
testing, under in-phase and out-of-phase biaxial loading, welded joints of both steel and aluminium having 
thickness of the main tube lower than 5 mm. 
 
SOMMARIO. Scopo del presente lavoro è quello di investigare l’accuratezza del Critirerio delle Curve di Wöhler 
Modificate nel prevedere la resistenza a fatica mltussiale di giunzioni saldate sottili. Una delle più importanti 
peculiarità del Criterio delle Curve di Wöhler Modificate risiede nel fatto che il danneggiamento a fatica può 
essere direttamente stimato eseguendo l’analisi tensionale in termini sia di tensioni nominali che di tensioni 
locali, ovvero in accordo sia con l’approccio del raggio fittizio che con la Teoria delle Distanze Critiche. 
L’accuratezza del Criterio delle Curve di Wöhler modificate è stata infine investigata rianalizzando una serie di 
risultati sperimentali di letteratura generati testando provini saldati cilindrici sia in acciaio che in alluminio 
sollecitati da carichi biassiali di fatica sia in fase che fuori fase, dove tali provini erano caratterizzati da uno 
spessore del tubo principale inferiore a 5mm. 
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INTRODUCTION 
 

he fatigue design curves stated by the available standard codes [1, 2] and recommendations [3] were determined by 
statistically re-analysing a large number of experimental results generated in different laboratories by testing 
samples not only having different geometries, but also manufactured by adopting different welding technologies. 

The common feature of the above laboratory specimens was that they were characterised by a relatively large thickness (in 
general, larger than 5 mm), so that, strictly speaking, the available design curves can efficiently be used to design against 
fatigue solely thick and stiff welded structures. 
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In recent years, thanks also to the development and optimisation of new welding technologies, much progress has been 
made in order to set up new welding processes suitable for efficiently and accurately manufacturing thin welded 
connections of both steel and aluminium. Owing to their specific structural features, nowadays thin welded joints are 
widely used in different industrial sectors and, amongst them, certainly the automotive industry deserves to be mentioned. 
In this scenario, aim of the present paper is investigating the accuracy of the so-called Modified Wöhler Curve Method 
(MWCM) [4] in estimating lifetime of thin welded joints subjected to in-phase and out-phase multiaxial fatigue loading. 
 

 
Figure 1: Modified Wöhler diagram for welded joints. 

 
 
THE MWCM IN MULTIAXIAL FATIGUE ASSESMENT OF WELDED JOINTS 
 

he MWCM is a critical plane approach which estimates multiaxial fatigue damage in welded joints through the 
maximum shear stress range, , as well as through the range, n, of the stress perpendicular to the critical plane. 
According to the fatigue damage model the MWCM is based on [4, 5], the critical plane is defined as that material 

plane experiencing the maximum shear stress range, such a stress quantity being determined according to the Maximum 
Variance Method [6]. 
From a practical point of view, the combined effects of both  and n are taken into account simultaneously through 
the following stress index [4, 7]: 
 




 n
w              (1) 

 

The most relevant aspect of the above stress ratio is that it is fully sensitive to the degree of multiaxiality and non-
proportionality of the assessed stress state: for instance, w is equal to unity and to zero under pure axial and pure 
torsional fatigue loading, respectively, whereas, given the ratio between the amplitudes of the applied stress components, 
its value changes as the non-proportionality level of the applied load history varies [4]. 
Turning back to the MWCM, the way it estimates fatigue damage under multiaxial fatigue loading is schematically shown 
in the modified Wöhler diagram reported in Fig. 1. The above log-log diagram plots the shear stress range relative to the 
critical plane, , against the number of cycles to failure, Nf. By performing a systematic reanalysis based on numerous 
experimental data [4, 7, 8], it was proven that, as ratio w varies, different fatigue curves are obtained (Fig. 1). In particular, 
it was observed that fatigue damage tends to increase as w increases: this results in the fact that the corresponding fatigue 
curve tends to shift downward in the above diagram with increasing of w (Fig. 1). According to the classical log-log 
schematisation used to summarise fatigue data, the position and the negative inverse slope of any Modified Wöhler curve 
can unambiguously be defined through the following linear relationships [4, 7, 8]: 
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    0w0w kkkk             (2) 
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where k and k0 are the negative inverse slopes of the uniaxial and torsional fatigue curve, respectively, whereas A and 
A are the ranges of the corresponding reference stresses extrapolated at NA cycles to failure (see Fig. 1). 
Another important aspect which deserves to be discussed in great detail is the fact that the reference shear stress range to 
be used to estimate multiaxial fatigue damage, i.e. Eq. (3), is assumed to be constant and equal to Ref(lim) for w larger 
than limit value lim [4]. This correction, which plays a fundamental role in the overall accuracy of the MWCM, was 
introduced in light of the fact that, under large values of ratio w, the predictions made by the MWCM were seen to 
become too conservative [9]. According to the experimental results due to Kaufman and Topper [10], such a high degree 
of conservatism was ascribed to the fact that, when micro/meso cracks are fully open, an increase of the normal mean 
stress does not result in a further increase of fatigue damage. Therefore, by taking full advantage of the intrinsic 
mathematical limit of Eq. (3) [4], lim takes on the following value: 
 

AA

A
lim,w 2 


 .          (4) 

 

In a similar way, also the k vs. w relationship, Eq. (2), is recommended to be corrected as follows: 
 

    0w0w kkkk    for w1 and NfNkp       (5) 
 

  kk w    for w>1 and NfNkp       (6) 
 

Nkp being the number of cycles to failure that defines the position of the knee point (Fig. 1). In the high/giga cycle fatigue 
regime, that is, for Nf>Nkp instead, the slope of the Modified Wöhler Curves is suggested as being taken invariably equal 
to 22 [24] independently from the actual value of the w ratio. As to the position of the knee point, it is worth observing 
here that, under axial loading, the International Institute of Welding (IIW) [3] recommends to take the knee point at 
Nkp=107 cycles to failure, on the contrary, under torsional loading, at Nkp=108 cycles to failure. Since the MWCM is a 
shear stress based criterion, the knee point can then be taken at 108 cycles to failure independently from the actual value of 
ratio w [12]. 
Turning back to the way the negative inverse slope, k(w), varies as w ratio increases, the hypothesis is formed that the 
negative inverse slope is constant and invariably equal to k for w>1, Eq. (6). The assumption is derived from the 
experimental evidence that, in general, as far as welded joints are concerned, the slope of the Modified Wöhler curves is 
never seen to be lower than the one of the uniaxial fatigue curve [4], this holding true independently from the degree of 
multiaxiality and non-proportionality of the applied load history. 
To conclude, as suggested by the modified Wöhler diagram sketched in Fig. 1, as soon as the appropriate Modified 
Wöhler Curve estimated through Eqs (2) to (6) is known for the specific value of w damaging the critical plane, the 
number of cycles to failure can directly be calculated as follows: 
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STRESS AND STRENGTH ANALYSIS 
 

y nature, the MWCM can be applied by performing the stress analysis according to different strategies [4, 13], i.e., 
nominal (and hot-spot) stresses [7, 8], the reference radius concept [12] and the Theory of Critical Distances [14, 
15]. B 
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In more detail, as soon as the nominal stress components damaging the welded connection being assessed are known, the 
MWCM can directly be applied by calibrating it through the design curves supplied by the proper standard codes [1-3], 
provided that, the designed weldments work in the as-welded condition. On the contrary, if welded joints are stress 
relieved, such connections are suggested as being designed against fatigue by multiplying the reference shear stress range 
of the adopted modified Wöhler curve, Ref(w) – Eq. (3), by a suitable enhancement factor, f(RCP), that is [3, 12, 16]: 
 

       CPwCPwfRe RfbaRf          (8) 
 
where enhancement factor f(RCP) is assumed to depend on the following load ratio [4]: 
 

max,n

min,n
CPR




 ,           (9) 

 
n,max and n,min being the maximum and minimum value of the stress perpendicular to the critical plane, respectively. 
According the above considerations, the rules recommended by Sonsino in Ref. [16] can directly be extended to those 
situations involving multiaxial fatigue loadings as follows: 
 

f(RCP) = 1.32    for RCP<-1 
f(RCP) = -0.22×RCP+1.1   for -1RCP0       (10) 
f(RCP) = -0.2×RCP+1.1  for 0<RCP0.5 
f(RCP) = 1   for RCP>0.5 

 
for steel welded joints and 
 

f(RCP) = 1.88    for RCP<-1 
f(RCP) = -0.55×RCP+1.33  for -1RCP0       (11) 
f(RCP) = -0.66×RCP+1.33  for 0<RCP0.5 
f(RCP) = 1   for RCP>0.5 

 
for aluminium welded joints. 
The most modern fatigue design method which is recommended by the IIW [3, 16] for the design of thin welded joints 
against fatigue is that based on the use of a fictitious radius: according to such an approach, the relevant stress states in 
welded joints having thickness of the main plate lower than 5 mm have to be determined by rounding the profile of either 
the weld toe or root with a fillet having radius, rref, equal to 0.05 mm. As soon as the stress state determined at the critical 
location according to the above strategy is known, lifetime under uniaxial fatigue loading can directly be estimated through 
a design curve having reference stress range, A, calculated, according to the maximum principal stress criterion, at 
NA=2·106 cycles to failure equal to 630 MPa for steel weldments and to 180 MPa for aluminium joints, such reference 
ranges being estimated for a probability of survival, PS, equal to 97.7% and evaluated, to simulate the damaging effect of 
high tensile residual stresses, at a load ratio, R, equal to 0.5. Further, the above uniaxial reference fatigue curve has its knee 
point, Nkp, at 107 cycles to failure and its negative inverse slope, k, is equal to 3 for Nf≤Nkp and to 22 for Nf>Nkp [3, 16], 
such a schematisation applying to both steel and aluminium thin welded joints. On the contrary, as far as torsional cyclic 
loadings are concerned, the design curve, again determined according to the maximum principal stress hypothesis, 
suggested by Sonsino [16] as being used to perform the fatigue assessment according to the rref=0.05 mm concept has 
reference shear stress range, A, at NA=2·106 cycles to failure equal to 250 MPa and to 90 MPa for steel and aluminium 
welded joints, respectively. Further, the negative inverse slope, k0, is equal to 5 for Nf≤Nkp and to 22 for Nf>Nkp, where 
Nkp is recommended to be taken at 108 cycles to failure [16]. 
Another important aspect is the fact that the fatigue curves as defined in the previous paragraphs are suggested to be used 
to design against fatigue solely “stiff” welded joints. On the contrary, when welded connections behave like “flexible” 
structures, the negative inverse slope of the corresponding design curve is seen to increase from 3 up to 5 under uniaxial 
fatigue loading and from 5 up to 7 under torsional loading [17]. 
Another important issue is that the uniaxial and torsional design fatigue curves as defined above can safely be used to 
calibrate the constants in the MWCM’s governing equations solely when our criterion is meant to be used to design 
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welded joints working in the as-welded condition. On the contrary, to correctly account for the effect of superimposed 
static stresses in stress relieved welded connections, the stress range at NA cycles to failure of any modified Wöhler curve 
is suggested as being corrected through enhancement factor f(RCP) - Eq. (9), such a factor being again calculated according 
to definitions (10) and (11) [12]. 
In recent years, much progress has been made to validate against experimental data an alternative local design 
methodology whose formalisation takes full advantage of the Theory of Critical Distances (TCD) applied in the form of 
the classical Point Method (PM) [4, 14, 15]. In more detail, our approach estimates fatigue damage in welded connections 
subjected to in-service time-variable loadings by directly post-processing the linear-elastic stress fields acting on the 
material in the vicinity of the assumed crack initiation sites, both weld toes and weld roots being modelled as sharp 
notches. The stress state to be used to determine the necessary stress quantities relative the critical plane has to be 
determined, along the bisector (i.e., along the focus path), at distance from the weld toe apex (or the weld root apex) equal 
to M-DV, such a critical distance being equal to 0.5 mm for steel welded joints [14] and to 0.075 mm for aluminium 
welded connections [15]. 
As soon as the time-variable stress state at the critical location is known, the range of the maximum shear stress, , and 
the range of the stress perpendicular to the critical plane, n, can directly be determined by taking full advantage of the 
Maximum Variance Method [6]. Subsequently, the calculated value for ratio w, Eq. (1), allows the negative inverse slope, 
k(w), and the reference shear stress range, Ref(w), of the appropriate modified Wöhler curve to be estimated from the 
calibration functions reported below. In more detail, for steel welded joints k(w) takes on the following values [14]: 
 

  52k ww      for w≤1     (12) 

  3k w       for w>1     (13) 
 
whereas Ref(w) at NA=5·106 cycles to failure can be estimated as [18]: 
 

  9632 wwfRe   [MPa]  for w≤2     (14) 

  32wfRe   [MPa]    for w>2     (15) 
 

for a Probability of Survival, PS, equal to 50%, and as [17]: 
 

  6724 wwfRe,A   [MPa]  for w2     (16) 

  19wfRe,A   [MPa]    for w>2     (17) 

 
for PS=97.7%. On the contrary, as far as aluminium welded connections are concerned, the constants in the MWCM’s 
governing equations are suggested as being estimated as follows (where NA=5·106 cycles to failure) [15]: 
 

  55.0k ww      for w≤4     (18) 

  3k w       for w>4     (19) 

  6.333.1 wwfRe   [MPa]  for w≤4     (20) 

  4.28wfRe   [MPa]    for w>4     (21) 
 
for PS=50%, and 
 

  285 wwfRe   [MPa]   for w≤4     (22) 

  8wfRe   [MPa]    for w>4     (23) 
 
for PS=97.7%. 
To conclude, it is worth observing that, strictly speaking, the Ref vs. w relationships summarised above are valid solely 
to design welded joints working in the as-welded condition [14, 15]. On the contrary, if the welded joints being assessed 
are stress relieved, the presence of non-zero mean stresses is recommended to be taken into account through a procedure 
similar to the one stated by Eurocode 3 [1], that is, by making use of an effective shear stress range calculated by adding 
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the tensile part to 60% of the compressive portion of the shear stress range [4, 15]. Accordingly, a suitable shear stress 
enhancement factor, f(), can directly be calculated as follows: 
 

  1f        for   0am      (24) 

 
amam

a

6.0
2

f



    for   0am      (25) 

 
where m and a are the mean value and the amplitude, respectively, of the shear stress relative to the critical plane [19]. As 
to the above correction, it is worth observing here that it can safely be used to design stress relieved welded joints made 
not only of steel (as recommended by Eurocode 3 [1]), but also of aluminium, since, in the latter case, the use of 
enhancement factor f() results in corrections that are characterised by a level of conservatism larger than the one 
obtained by adopting the enhancement factor values suggested by Sonsino [16]. 
 

 
Figure 2: Steel and aluminium laser beam welded joints tested at LBF, Darmstadt, Germany [18, 19]. 

 
 
VALIDATION BY EXPERIMENTAL RESULTS 
 

y performing a systematic bibliographical investigation, a number of data sets were selected from the technical 
literature, the considered experimental results being generated by testing cylindrical welded samples of both steel 
and aluminium having thickness of the main tube varying in the range 1-3.2 mm. 

Fig. 2a shows the geometry of the steel and aluminium laser beam welded joints tested at Fraunhofer-Institute for 
Structural Durability and System Reliability LBF, Darmstadt, Germany [18, 19]. Razmjoo [20] instead tested, under 
combined tension and torsion, fillet welded tube-to-flange specimens having thickness of the main tube equal to 3.2 mm 
(Fig. 3), a manual metal arc process being adopted to manufacture the welded samples. Finally, the set of experimental 
results generated by Costa et al. [21] by testing, under combined bending and torsion, the tubular samples of Al 6060-T6 
sketched in Fig. 4 was also considered in the validation exercise discussed in what follows. 
Initially, attention was focussed on the accuracy of the MWCM in predicting multiaxial fatigue lifetime of thin welded 
joints when our approach is applied in terms of nominal stresses. The experimental, Nf, vs. estimated, Nf,e, number of 
cycles to failure diagrams reported in Fig. 5a show that, by calibrating the MWCM through the appropriate FAT curves 
recalculated for a Probability of Survival, PS, equal to 50%, the use of our criterion resulted in estimates falling within the 
axial and torsional reference scatter bands. In the charts of Fig. 5 the continuous and dashed straight lines delimit the 
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standard uniaxial and torsional fatigue scatter bands, respectively, the plotted scatter bands being recalculated from the 
reference value of 1.8 suggested by Haibach and determined by considering fatigue curves characterised by a PS value 
equal to 2.3% and 97.7%, respectively [29]. 
 

 
Figure 3: Steel welded joints tested by Razmjoo [20]. 

 

 
Figure 4: Aluminium welded joints tested by Costa et al. [21]. 
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Figure 5: Accuracy of the MWCM applied in terms of nominal stresses in estimating fatigue lifetime of thin welded joints. 
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The error charts of Fig. 5 make it evident that the MWCM applied in terms of nominal stresses is highly accurate in 
estimating fatigue lifetime of thin welded joints subjected to in-service multiaxial fatigue loading, the level of accuracy 
being definitely satisfactory simply because we cannot ask a predictive method to be, from a statistical point of view, more 
accurate than the experimental information used to calibrate the method itself. As to the appropriate nominal standard 
fatigue curves to be used to design thin welded details against fatigue, it has to be admitted that choosing the correct curve 
is never an easy task due to the fact that the available standard codes [1, 2] and recommendations [3] were prepared by 
reanalysing experimental results generated by mainly testing thick welded joints. 
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Figure 6: Accuracy of the MWCM applied along with the rref=0.05mm concept in estimating fatigue lifetime of thin welded joints. 
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Figure 7: Accuracy of the MWCM applied in conjunction with the Point Method in estimating fatigue lifetime of thin welded joints. 
 
Turning to the accuracy of the MWCM applied along with the reference radius concept, the relevant notch stresses 
damaging the investigated thin welded joints were determined by solving Finite Element (FE) models done using 
commercial FE software ANSYS®, the density of the mapped mesh in the process zone being gradually refined until 
convergence occurred. According to the reference radius approach, the weld toes in the above models were rounded with 
a fillet having radius equal to 0.05 mm, the schematisation adopted to model the samples tested at LBF being sketched in 
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Fig. 2b [18, 19]. The overall accuracy of the MWCM applied by rounding the weld toe with a fillet radius of 0.05 mm is 
summarised in the experimental, Nf, vs. estimated, Nf,e, fatigue lifetime diagrams reported in Fig. 6, the constants in our 
criterion’s governing equations being determined from the IIW curves [16] recalculated for PS=50%. The error charts of 
Fig. 6 suggest that the high level of conservatism characterising the axial and torsional reference curves used to calibrate 
the MWCM itself led to conservative estimates, the results generated by Razmjoo [20] being, due to an intrinsic fatigue 
“weakness” depending on the adopted welding technology, the only ones falling in the non-conservative region. 
In order to check the accuracy of the MWCM applied in conjunction with the Point Method in estimating multiaxial 
fatigue lifetime of thin welded joints, the relevant linear-elastic stress fields acting on the process zone of the investigated 
connections were determined by solving FE models done using commercial code ANSYS®. According to the general rule 
discussed in Refs [4, 14, 15], the weld toes in the above models were modelled as sharp notches, the schematisation 
adopted to estimate the reference stress state in the samples tested at LBF being shown in Fig. 2c. 
The experimental, Nf, vs. estimated, Nf,e, number of cycles to failure diagrams of Fig. 6 show that, when calibrated by 
using the Ref vs. w relationships estimated for PS=50%, the systematic use of our criterion resulted in accurate 
estimates, the experimental results generated by testing aluminium thin welded joints being characterised by the largest 
degree of conservatism. The above error chart makes it evident that the obtained level of accuracy is definitively 
satisfactory: as clearly proven by the error charts of Fig. 6, the MWCM applied along with the PM is seen to be capable of 
accurately estimating uniaxial/multiaxial fatigue lifetime of both steel and aluminium welded joints, by accurately taking 
into account not only the scale effect in weldment fatigue, but also the damaging effect associated with the degree of 
multiaxiality and non-proportionality of the investigated load history. 
As to the accuracy shown by the charts of Fig. 6, an interesting aspect which deserves to be mentioned here explicitly is 
that, whilst in thick welded joints the contribution of cyclic plasticity can be neglected with little loss of accuracy [4], as the 
thickness of the main plate/tube decreases the role of cyclic plastic deformations becomes more and more important. In 
spite of the above observations, the MWCM applied along with the PM is seen to be successful also in estimating fatigue 
damage in very thin welded joints, the relevant stress fields being determined by always forcing the parent material to obey 
a linear-elastic constitutive law. The above considerations raise the obvious question: why does it work? Although the 
underlying microstructural mechanisms are based on elasto-plasticity, micro-damage and micro-fracture, it appears to be 
sufficient to perform a linear elastic analysis and post-process the results. The fact that this simple idea is applicable in so 
many different situations (see for instance [23]) suggests that this is more than mere coincidence. In order to explain this, 
the concept of gradient mechanics can be used, in particular the version of gradient elasticity as it has been advocated by 
Aifantis and co-workers since the early 1990s [24-26]. In this particular enrichment of the standard equations of elasticity, 
the equilibrium equations are expanded with higher-order spatial derivatives that are the Laplacian of the usual terms, that 
is: 
 

   0bLuCLuL 22T            (26) 
 

where L is the usual strain-displacement derivative operator,  T2 , C contains the elastic moduli in terms of 
Young’s modulus and Poisson’s ratio, b are the body forces and u are the displacements. A new constitutive parameter   
is introduced that has the dimension of length and that can be linked to the microstructural properties (such as size of the 
Representative Volume Element or the inter-particle distance – see [27] for an overview).  
Interestingly, Eq. (26) does not have to be solved as a set of fourth-order partial differential equations (p.d.e.). Instead, 
following the theorems of Ru and Aifantis [26] it is possible to split the equations into two sets of second-order p.d.e., 
which can be solved consecutively. The implications for finite element implementations are that standard element technology 
can be used [28], whereby firstly the equations of classical elasticity are solved, the solution of which subsequently serves 
as a source term in a post-processing step that introduces the gradient-dependence into the state variables. That is, there 
are two important similarities with the TCD methodology: the results of standard linear elasticity are postprocessed, and 
this postprocessing is governed by a material length scale parameter. This suggests that the two length scales (namely   
from gradient mechanics and the critical distance itself from the TCD) have similar meanings and can be related to each 
other. 
The effects of the gradient enrichment in Eq. (26) are that stresses and strains are redistributed over a zone around the 
stress concentrator (e.g. crack tip or indentor); the size of this redistribution zone is set by  . This is not too different 
from the TCD-PM technique, whereby representative stresses are sampled at a critical distance away from the stress 
concentrator. This sheds some light as to why the post-processing of linear elastic results via TCD, or indeed gradient 
mechanics, is so successful in predicting the lifetime of structural components subjected to fatigue: the post-processing 
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assumes there is an elastic zone around the stress concentrator in which stresses are redistributed. In reality, the 
mechanical behaviour in this zone will be governed by micro-structural plasticity, damage and fracture, but the 
redistribution of the stresses that are the result of such dissipative mechanisms can also conveniently and straightforwardly 
be described by the TCD or by gradient mechanics – the length scale parameter   of gradient mechanics should then be 
interpreted as proportional to the size of the plastified (or plastifying) zone around the stress concentrator.  
 
 
CONCLUSIONS 
 

he MWCM is seen to be successful in estimating multiaxial fatigue lifetime of thin welded joints by directly post-
processing the relevant stress state calculated in terms of either nominal stresses or local quantities: this implies 
that our multiaxial fatigue method can safely be used in situations of practical interest to design welded joints 

against multiaxial fatigue  
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