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ABSTRACT. Ductile cracked structures yield locally under load to form a plastic zone (pz) around their crack 
tips. As the crack behavior strongly depends on this pz size, and as most cracked structures design routines 
depend on it, its precise estimation is a problem of major practical importance. The first classical pz estimates 
are based only on the stress intensity factor (SIF), but their precision is limited to very low nominal stresses. 
Improved estimates have been proposed considering the T-stress, obtained from the Williams series zero order 
term. However, neither SIF, nor SIF+T-stress based estimates can reproduce linear elastic (LE) stress fields that 
satisfy all boundary conditions in cracked components. In particular, the nominal stresses far from the crack tip, 
which have a major influence on the predicted pz size and shape. To prove this point, this paper first presents 
the complete LE stress field solution for the Griffith plate, using three different methods to arrive in the same 
analytical solution: the first is based on its Westergaard stress function, the second starts from the equivalent 
Inglis plate (considering its elliptical notch root as equal to about half the crack tip opening displacement), and 
the third is based on the complete Williams series. Next it introduces the equilibrium corrections necessary to 
compensate for the stress limitation inside the plastic zone. Then it compares pz estimates generated from this 
complete solution with classical SIF and SIF+T-stress pz estimates for various nominal stress to yield strength 
ratios, demonstrating the importance of using correct stress fields to evaluate such pz, particularly for the 
relatively high ratios used in high-performance structures. Finally, it speculates that for more complex 
structures, where the component geometry and type of loading may also significantly influence pz sizes and 
shapes, the plastic zones can be better estimated by a similar approach. 
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INTRODUCTION 
 

he SIF alone cannot model well some simple crack problems. E.g. the linear elastic (LE) stress field generated by a 
SIF KI  na in a Griffith plate with a 2a crack, loaded in mode I by a nominal stress n, does not obey the 
boundary conditions far from the crack tip: ij = [KI /(2r)]gij()  (r  , 0) = 0, instead of (r  , 0) = 

n as needed, where r is the distance from the tip,  is the angle measured from the crack plane and gij() are the Irwin -
functions. LE analysis obviously cannot describe stresses and strains inside plastic zones pz() around crack tips either. 
But both for teaching and designing purposes, pz() are traditionally estimated from simplified LE analysis, assuming they 
depend only on KI (in mode I). Indeed, equating the LE Mises stress to SY, the yielding strength, the simplest mode I 
elastic-plastic frontiers in plane stress (pl-) and in plane strain (pl-) are estimated by [1] 
 

2 2 2 2
pl I Y

2 2 2 2 2
pl I Y

pz( ) ( K 2 S ) cos ( 2 ) [ 1 3 sin ( 2 )]

pz( ) ( K 2 S ) cos ( 2 ) [( 1 2 ) 3 sin ( 2 )]





   
    





   

    
        (1) 

where  is Poisson’s coefficient. Thus, according to this classical estimate, the pz() size directly ahead of crack tips in pl-
, the reference used here to normalize pz plots, should be pz(0)pl-  pz0 (1/2)(KI/SY)2. But the ijf(KI) hypothesis is 
exact only when r  0, or exactly where the assumed LE behavior has no sense. Singular elastic-plastic (EP) estimates, 
such as the HRR field, do not solve this problem either. As the pz border may not be too close to crack tips, it is worth to 
at least estimate the effect of n/SY on pz(), where SY is the yielding strength, instead of simply neglecting it. A simplistic 
but clear estimate for this n/SY effect can be made forcing y(x , y0)n, adding up a constant yn stress to 
the Williams (or Irwin) stress LE field to obtain 

 
nWil 2 1/22 2

n n xyx y x yM , pl 3( ) ]( ) [( g ) ( g ) ( g )( g ) g
        
         (2) 

 

where nWil
M ,pl( ) 

  
  is the resulting LE Mises stress distribution around the crack tip in pl- (considering the n/SY 

effect),  = KI/(2r), and gx(), gy(), and gxy() are the mode I -functions associated with x, y and xy. A similar 
equation can be easily generated for pl-. The corresponding pz() are obtained from M()SY, see Fig. 1. 
 

       
 

Figure 1: Mode I pz() roughly estimated for the Griffith plate by nWil
YM ,pl( ) S

  
  for pl- and pl- limit conditions. 
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Fig. 1 indicates that the n/SY ratio may significantly affect pz() under real loading conditions, since engineering 
structures are typically designed with yield safety factors 1.2 < Y < 3. However, it cannot prove that the n/SY effects are 
that important, since the hypothesis used to generate this plots is not sound. But this simplistic estimate points out that 
the pz() dependence on n/SY should be further explored, as done in the following sections. 
 
 
PLASTIC ZONES ESTIMATED USING THE INGLIS STRESSES 
 

 much better estimate for the n/SY effect on pz() is obtained from the Inglis plate with a very sharp elliptical 
notch of major semi-axis a normal to n, and minor semi-axis b  a. Making x  ccoshcos and y  csinhsin, 
this notch is described in elliptical coordinates (,) by   0, where a ccosh0, b  csinh0, and c  a/cos0. 

The general LE stress field in Inglis plates is given by a series too long to be reproduced here [2]. If the very sharp notch 
has a tiny (but finite) tip of radius b2/aCTOD/22KI2/SYE’, where E’E in pl- and E’E/(12) in pl-, 
then its stress concentration factor Kt1 + 2a/b is given by   
 

YY Y
t 2 n n nn

Ea E S Sa a a EK 1 2 1 2 1 2
b b 2 22 a


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 

     (3) 

 
Using this a/b ratio to obtain the notch shape that simulates the crack by 0tanh1(b/a), then the LE stresses in the 
Inglis plate can be calculated. Finally, the Mises stress resulting from , , , and z( + ) can be used to 
estimate the Inglis plastic zones by numerically solving equation (5) for | | , see Fig. 2.  
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   (4) 

 

       
 

Figure 2: Mises plastic zones pz() in pl- and pl-, calculated from the Inglis LE stress field for a cracked plate loaded in mode I, 
modeling the crack as a very sharp elliptical notch of tip radius  = CTOD/2. 
 
Therefore, the influence of the nominal stress on Griffith’s plate pz(), although a little less than estimated by the 
simplistic Fig.1 approximation, is indeed significant and should not be neglected in practical applications. Note that to use 
Inglis to obtain an exact LE stress field for the infinite cracked plate in mode I, when the crack is modeled as an elliptical 
sharp notch of tip radius  = CTOD/2, a quite reasonable hypothesis, since ideal cracks should open by CTOD under 
load. Nevertheless, it is worth to use an alternative approach to confirm it, as follows.  
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PLASTIC ZONES ESTIMATED USING THE WESTERGAARD STRESS FUNCTION 
 

he Westergaard Z(z) stress function provides an alternative way to rigorously estimate pz() from the elastic stress 
field [3]. But, since the elastic-plastic frontier is not adjacent to the crack tip, the full stresses generated from Z(z) 
must be used in such a calculation. This is easily demonstrated revisiting the classical Irwin solution for the 

Griffith plate loaded in mode I. Thus, if (x, y) and (r, ) are Cartesian and polar coordinates centered at the crack tip, 
i1 and z x + iy is a complex variable, the Irwin solution is obtained from the Westergaard stress function 
 

Z(z) = zn/(z2a2)   Z’(z) = dZ/dz = a2n/(z2a2)3/2      (5) 
 

x n y xyRe( Z ) y Im( Z ) , Re( Z ) y Im( Z ), y Re( Z )               (6) 
 
Note that to solve the mode I problem from Z(z) a constant term n has to be summed to xRe(Z)yIm(Z’) to force 
x() = 0 in the plate, an adequate mathematical trick since a constant stress in the x direction does not affect the stress 
field near the crack tip. However, the yRe(Z)yIm(Z’) stress is usually approximated to generate a SIF (a highly 
desirable feature but for estimating pz(), since it neglects the n/SY effect) by writing 

 
y( = 0) = n(x + a)/[(x + a)2 – a2]1/2  na/(2ax) = KI/(2r)  (if x  a)    (7) 

 
where 2a is the crack size perpendicular to n. As (7) formally yields y(0)KI/(2r)0 if r  , this classical 
approximation obviously cannot be used to study the n/SY influence on pz(). But this task can be fulfilled by first 
calculating the complete stress field generated from Z and Z’ to obtain the resulting Mises (or Tresca, for that matter) 
stress, and then equating it to SY to obtain the required pz() EP frontiers considering the n/SY effect. The same process 
can be easily applied in pl-, see Fig.3. Inglis and Westergaard pz visually coincide when the sharp ellipsis has its minor 
semi-axis (instead of its tip radius) b = CTOD/2 = 2KI2/SYE’, see Fig. 4. As pzIng() and pzWtg() are obtained from 
completely different equations, their near coincidence is certainly not fortuitous. Therefore, the large n/SY effect 
predicted by these rigorous solutions really should not be neglected in practice. This point must be emphasized for design 
purposes, since it is the plastic zone size that validates most LEFM predictions.  
 

       
 
Figure 3: Mises pz() for the Griffith plate loaded in mode I, estimated from the complete LE stress field induced by the Westergaard 
stress function for pl- and pl- conditions. 
 
 

T 



 

J.T.P. Castro et alii, Characterization of crack tip stress fields, Forni di Sopra (UD), Italy, March 7-9, 2011, 58-65                                              
 

62 
 

 
PLASTIC ZONES ESTIMATED USING THE COMPLETE WILLIAMS SERIES  
 

he Williams series may be used to obtain exact LE stress fields, thus its coefficients may be adjusted to the 
complete field generated from the Westergaard stress function, successively incrementing its number of terms [4]. 
Fig. 5 shows the EP frontiers ahead of the crack tip obtained considering 1 to 4 terms. 3 terms are already 

sufficient to reproduce pzIng()  pzWtg().  Thus, exactly as expected, these three paths lead to the same pz() estimations.  
These estimates are based on the Griffith plate correct LE stress field, which obeys the plate boundary conditions (namely 
y(x  a , y 0)  xy(x  a , y 0)  x

xy
0, y

n). Thus they are the best pz() LE estimate obtainable for 
the Griffith plate without considering equilibrium requirements. However, as the stresses inside the plastic zone are 
limited by yielding, the truncated LE stress field cannot obey equilibrium conditions. But such conditions can have a 
major influence on pz(), as recognized by Irwin a long time ago. The next topic considers them, and compares the 
resulting pz() estimations with pz() estimated considering only the T-stress correction. 

       
 

Figure 4: Mises pz() estimated from the complete Westergaard stress field are visually identical to the Inglis estimate when a sharp 
elliptical notch with b = CTOD/2 = 2KI

2/SYE’ instead of  = CTOD/2 is used to model the crack. 
 

       
 

Figure 5: The Mises pz() estimated for the Griffith plate loaded in mode I from the Williams series with only 3 terms visually 
reproduces reasonably well pzIng()  pzWtg() both in pl- and in pl-. 
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T-STRESS AND EQUILIBRIUM INFLUENCE ON PLASTIC ZONE ESTIMATIONS 
 

he T-stress correction is a constant x term (parallel to the crack) added to the KI-based stress field which can 
alleviate some of its limitations [5]. Thus, it has been widely explored in the literature to model some interesting 
problems [6-15]. From a practical point of view, Fett [16] lists T-stress values for several geometries. However, the 

resulting KI+T-stress field cannot reproduce the y
  n boundary condition in the Griffith plate, as it is just a 

simplification of the complete stress field used above. Therefore it is interesting to compare the plastic zones estimated 
from these two LE fields.  
But before doing so, it is important to remember that although the complete field generated e.g. from the Westergaard 
stress function is the correct LE solution for the Griffith plate, its truncation inside the plastic zone limits stresses, thus 
inevitably leads to underestimated pz() frontiers. In a first approximation, such stresses can be limited by SY, neglecting 
strain-hardening effects inside pz(), but such effects can be considered assuming an HRR-like stress-strain relation. 
However, due to space limitations only the ideal perfectly plastic behavior is discussed here.   
Four alternative models for compensating the stress truncation inside the plastic zones augmenting them by forcing the 
plate to obey equilibrium conditions are considered following.  

 Correction to compensate for the y component truncation, as proposed by Rodriguez et al [17]: 
 

 
 

 

  

Wtg
M

y

pz

Wtg eq 0
M

Wtg
y M
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pz
pz ,



 
  

 
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
     (8) 

 

This correction may be seen as a generalization of Irwin´s classical correction for the plastic zone along the crack direction 
 = 0, which is based on the equilibrium of net vertical forces that could not exist within the plastic zone because y 
cannot surpass the yielding stress [3]. Besides the generalization to perform this correction along any -direction, the most 
important difference between equation (8) and Irwin´s receipt is that the former is based on the complete Westergaard 
stress function while the latter considers a stress field that is based solely on the SIF. 

 Correction using a constant increment along each radius connecting the crack tip to the pz() borderline, defined 
by its -direction, obtained from 
  

   Wtg eqR Wtg
M Mpz pz CTE             (9) 

 

where    0 0Wtg eqR Wtg
M MCTE pz pz     . This constant has the same equilibrium rational as the previous 

correction, and it is based on the 0 direction. For other radial directions, the same length correction is adopted, 
inspired by the idea of the constant T-stress correction. 

 Correction based on the Mises stress, obtained from  
 

 
 

 Wtg
Mpz

Mises
Wtg eqM 0
M

Y

r ,  dr

pz
S



 
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

        (10) 
 

Since the correction  Wtg eq y
Mpz    only presents the equilibrium rational for 0  and does not take into account the 

effect of the other stress components, this correction based on the Mises stress may be seen as a reasonable alternative, 
since it considers them and can be used for any type of loading. 

 Correction based on the vertical traction component, obtained from 
 

 
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where ty is determined by 
 

 
 

   
   

 
 

x xyx
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r , r ,t r , cos
t r , r , r , sin
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            
       (12) 

 

Again, this correction has an exact equilibrium appeal only for 0.  However, by considering the vertical traction 
component, the equilibrium may be seen as resulting from a free body diagram obtained by sectioning the model along 
any -direction. 
Fig. 6 and Fig. 7 compare the equilibrium various correction described above, by showing the difference between their 
pz() estimates for plane stress and plane strain. These figures also depict plastic zones obtained by truncated SIF, SIF 
plus T-stress, and complete LE stress fields, which do not obey equilibrium requirements. Note in particular that the 
KI+T-stress pz() is significantly smaller than equilibrium-corrected ones. 
 

       
 

Figure 6: Equilibrium-corrected pz() and pzKI+T() estimated for the Griffith plate loaded in mode I in pl-. 
 

       
 

Figure 7: Equilibrium-corrected pz() and pzKI+T() estimated for the Griffith plate loaded in mode I in pl-. 
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Fig.6 and Fig.7 display pz() borderlines estimated for n/SY  0.2 and 0.8 ratios, which correspond to yield safety factors 
Y5 and 1.25, representative of maxima low and high loads used in typical structural applications. The equilibrium-
corrected hypothesis based on y, M, and on the traction vector provide similar pz() predictions, which are significantly 
larger than the KI+T-stress one usually accepted as reliable pz() estimates for analysis and design purposes. As the KI+T-
stress field neglects stress components considered by the exact LE solution for the Griffith plate, this suggest that for 
practical applications pz() in generic cracked components should be estimated using equilibrium-corrected LE stress 
fields properly calculated using standard finite element procedures [18].  
 
 
CONCLUSIONS 
 

he nominal stress to yield strength ratio significantly affects the size and shape of plastic zones ahead of crack tips 
estimated from LE stress fields, as demonstrated for Griffith’s plate using 3 different ways to find its exact 
solution. This solution should be corrected to consider equilibrium requirements violated by the LE stress 

truncation inside the plastic zone, a task tackled by 4 different approximate but reasonable hypotheses. From these, the 
stress-based ones generate quite similar pz() estimates. Such equilibrium-corrected pz() are significantly larger than the 
estimates obtained from the plate SIF KI  n(a) alone, or from the combination of its SIF+T-stress, particularly for the 
high y/SY ratios used in modern structures. As such estimates are based on an exact LE solution complemented by 
sensible equilibrium assumptions, they indicate that the traditional practice of assuming that T-stress can adequately 
correct SIF limitation for estimating pz() may, and probably should be questioned. Moreover, they suggest that pz() 
frontiers can be similarly estimated in cracked structural components using complete LE stress fields calculated by well-
established finite element procedures, which should be then equilibrium-corrected to avoid underestimation due to stress 
truncation, possibly including strain-hardening effects for better precision. This fact has important practical consequences, 
as it can be used to seriously question the similitude principle, one milestone of the mechanical design against fracture, in 
many real life problems. In compensation, it may help to better predict the actual toughness of real structures, by 
comparing reliable estimates for their pz() with those obtained for the standard test specimens used to measure their 
material toughness. 
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