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ABSTRACT. It is notoriously difficult to achieve experimentally stable shear mode crack propagation in Mode II.  
The elastic stress field around a sharp elliptical crack is examined, using the classical solution of Inglis and Savin, 
and it is compared to the linear elastic fracture mechanics solution to reveal some important shortcomings of 
the latter approximate singular solution.  Graphs of the characteristic stress field around a blunt crack are 
presented for Modes I and II.  The crack tip radius of curvature and the size of the fatigue failure process zone 
required for stable shear mode cracking are discussed. 
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INTRODUCTION 
 

 number of people have attempted to study Mode II, shear fatigue crack growth over the past forty years, but 
many failed because they observed that the crack branches to propagate in Mode I, an opening mode.  However a 
few have achieved Mode II propagation successfully, particularly Otsuka [1].  In this paper we explore the crack 

tip stress fields for both Mode I and II loading, and draw conclusions about pertinent and necessary conditions for stable 
Mode II growth. 
As an example, at Sheffield we attempted to study Mode II in a rail steel using a tubular specimen with a spark-eroded 
axial crack, tested in reversed torsion but with a superimposed constant compressive axial stress to stabilise the shear 
mode of growth.  A similar experiment of Otsuka using mild steel was successful using an asymmetric four point bending 
method.  But the Sheffield tests always produced branch cracks, even with axial compression as high as yield to close any 
incipient Mode I branch.  The spark-eroded starter notch had a root radius of curvature of 0.08 mm (no pre-cracking was 
possible with this particular geometry); consequently as shown below the shear stress at the crack tip for Mode II loading 
was absolutely zero.  Therefore no shear mode fatigue crack growth was generated in the absence of cyclic shear stresses. 
However in engineering practice, shear mode cracking is not uncommon, and it is certainly important.  In rail steel under 
rolling contact for high speed trains operating in a temperate climate, rail cracks are generated and extend just below the 
running surface on a plane of maximum cyclic shear stress, Fig. 1.  In the presence of rain water, a small amount of fluid 
entrapped in the crack prevents crack closure, so that the Mode II displacements are not attenuated by friction between 
the crack faces.  In drier conditions, friction prevails, and the crack then branches, either upwards leading to a loss of 
material from the rail surface, or more seriously downwards leading to a rail fracture [2].  So the reduction or elimination 
of frictional effects that attenuate crack sliding displacements is the first requirement for stable shear mode propagation. 
Further reported examples of Mode II fatigue cracking are found in fretting fatigue, in Aluminium Lithium alloys, in roller 
bearings, in Stage I small fatigue cracks, in tests with sequential mixed mode load histories, and in torsion, particularly for 
low cycle fatigue.  These correspond to short cracks below the Mode I threshold, microstructures that favour local shear 
deformation bands, compressive stress fields that close incipient tensile cracks, crystallographic cracks on a single flat 
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plane avoiding roughness induced closure, and a small tensile load cycle prior to a shear cycle to leave a residual crack 
opening avoiding closure, respectively.  The final case is illustrated in Fig. 2, that in torsion cracks often follow shear 
planes in low cycle fatigue where the extensive plasticity and reduced levels of tensile stress favour the shear mode [3].  
Even where Mode I cracking starts on 45O planes, a transition to shear mode is seen for low cycle fatigue in a medium 
carbon steel. 
 

 
 

Figure 1: A squat fatigue crack in a rail line, which initiated from the running surface (top surface) and propagated on a shear plane, 
also showing tensile mode branches [2].  The rolling contact wheel travels from right to left. 
 
 

 
Figure 2: Torsional fatigue endurance curve for a medium carbon steel [3].  The crack shapes shown are sketched from real specimens, 
with the specimen axis horizontal.  The theoretical curve was found by integration of crack propagation rules for tensile and shear 
modes of growth [3]. 
 
 
MODEL FOR TWO DIMENSIONAL CRACK TIP STRESS FIELDS 
 

eal cracks are always are always blunt if we look closely enough at the crack tip.  In continuum mechanics we 
usually assume a sharp crack where a singularity is formed at the crack tip, and using Lagrangian coordinates 
(where the initial singular geometry is maintained for the small strain case) the usual linear elastic fracture 

mechanics solution is derived.  Even for an elastic solid, this gives an infinite strain on approaching the crack tip which is 
clearly not small, and the tip deforms into a parabolic shape for Mode I.  Clearly we need to use Eulerian coordinates to 
allow for the changing geometry, and the singularity disappears, even for the smallest levels of applied load.  A simpler 
alternative approach is to use the solutions for stresses around an elliptical notch due to Inglis [4], or Savin [5], and set the 
root radius of curvature of the sharp ellipse to match the crack tip curvature – for example calculated to match one half of 
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the crack opening displacement.  These two dimensional plane stress solutions for a crack in an infinite plate are linear 
elastic, and do not need to use the approximations associated with the linear elastic fracture mechanics approach. 
Details of the solution method of Savin [5] are presented elsewhere [6], for a plate under biaxial applied stress, with stress 
axes at a selected angle α with respect to the crack plane. The method provides a full field solution of the stress around an 
elliptical hole, assuming only linear elastic behaviour. Thus the results should be more accurate than the fracture 
mechanics approach, if we get the crack tip radius of curvature right, and if the crack can be sensibly modelled by a rather 
flat ellipse. The applied principal stresses are  S  and  ΛS  shown in Fig. 3.  The stress tensors along a vector t at an angle  
φ  measured from the crack tip are then evaluated for a range of  t  values.  For this paper, the half crack length D  was 10 
mm, the ellipse half height  b  was 0.001 mm, giving a root radius of curvature  rho  of   10-7 mm.  (In a steel with 350 
MPa yield stress, this would correspond to about 20 MPa applied Mode I stress, but the actual stress level  S  is immaterial 
as the results are normalised.) Stresses are presented for a Cartesian coordinate system, where the y-axis is normal to the 
crack. 
 

 
Figure 3: An elliptical notch in an infinite plate.  The applied stresses  S  and  S  have the first principal stress at an angle    to the 
horizontal in the Savin solution [6]. 
 
In the graphs that follow, the axes are normalised, and it transpires that for this normalisation scheme, the results are 
independent of applied stress and crack geometry in the crack tip region.  On the horizontal axis, distance from the crack 
tip  t  is normalised by radius of curvature  rho.  (For an ellipse,  rho  = b2/D.)  The stresses  sigma x,  sigma y,  and  
tau xy  (i.e. normal stress on x- and y-axes, and the shear stress) are each normalised by  Kt S  where  Kt  is defined as the 
stress concentration factor for a tensile stress normal to the crack, that is 
 

Kt = 1  +  2.√(D/rho) – Λ 
 
Note this formula was used for the Mode II results as well as Mode I, as it characterises the crack tip geometry and the influence of 
curvature.  It is not equal to the stress concentration factor in pure shear, nor in any other mixed mode case. 
An Excel spreadsheet was developed with the Savin solution, and a second with the Inglis solution to ensure that they 
were identical.  Results are presented for Mode I loading in Figs. 4 and 5, and for Mode II loading (pure shear) in Figs. 6 
and 7.  In these figures the linear elastic fracture mechanics (LEFM) results are also given, shown as dashed lines.  
Although a logarithmic scale is employed for the horizontal axis, the vertical scale is linear to permit negative stresses to 
appear.   
Fig. 4 presents Mode I stresses, and there is clearly good agreement of the Savin solution with LEFM for  t/rho  greater 
than 10.  For the far field (beyond 107), the LEFM stresses will fall to zero, being a first order asymptotic solution, 
whereas the Savin stress will approach the applied stress field.  The LEFM results also deviate from reality at small values 
of  t/rho,  as they tend to infinity.  However  sigma x  tends to zero,  and  sigma y/(Kt S)  tends to a finite value of 
unity,  governed by the stress concentration factor.  It is also notable that  sigma x  peaks at  t = rho.  The LEFM 
analysis requires that the stresses  sigma x  and  sigma y  are equal on the x-axis (with a zero T-stress), but no such 
restriction applies for the Savin solution. 
Fig. 5 covers the same situation as Fig. 4, but stresses are given for a  φ = 45O  line emanating from the crack tip.  Again 
for  t/rho  greater than 10 LEFM works well.  Both sigma x  and  tau xy  fall to zero at the crack tip, as they must on 
meeting a vertical free surface at the blunt crack tip.  As before  sigma y  remains finite.   
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Figure 4: Mode I stresses ahead of the crack tip.  Here  Λ = 0,   = 90O,   = 0O,   D = 10 mm,  b = 0.001 mm,  rho = 10-7 mm.  
The stress  tau xy  is of course zero, from symmetry.  The stresses  sigma x  and  sigma y  are equal for LEFM. 
 

 

Figure 5: Mode I stresses on a 45O plane emanating from the crack tip.  Here  Λ = 0,   = 90O,   = 45O,   D = 10 mm,  b = 0.001 
mm,  rho = 10-7 mm.   
 
Thus we see that close to the crack tip, if we can measure stresses in this region we should not try to model them by 
conventional fracture mechanics.  Departures of LEFM results from reality are significant.  Nevertheless, further from the 
crack tip the LEFM results are excellent, and very much easier to determine than the Savin technique.  One should also 
note that the role of a plastic zone at the crack tip has not been taken into account, although it can easily be done by 
judicious choice of the radius of curvature, using for example the Dugdale model.   
Having learnt how to interpret these graphs for the Mode I case, we can now look at Mode II, or indeed any mixed mode 
case, the role of T-stress, etc.  Fig. 6 shows Mode II stresses ahead of the crack tip.  Both LEFM and Savin predict that 
the only non-zero stress is  tau xy, and even this falls to zero at the crack tip (although LEFM goes for an infinite value).  
Here we see one solution to the crack growth in torsion problem posed in the introduction.  At the critical point where a 
shear mode crack should initiate, all three stresses are absolutely zero, so a shear fatigue crack has no driving force at all, 
even though LEFM predicts a healthy range of stress intensity factor.  But this cannot be the full solution to our problem, 
because where Sheffield failed to grow a shear crack, Otsuka succeeded. 
Overall, the Savin approach using blunt cracks appears to provide much better guidance to the near tip stress fields, and 
particularly in Mode II.  It is worth pointing out that even though we do not have significant crack opening in shear, real 
cracks are blunt, and must have a radius of curvature of at least 5 to 10 Angstrom, or three atomic dimensions.  If the 
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“crack tip” is only one atomic dimension wide, then we don’t really have a crack, but an edge dislocation.  So shear cracks 
should be treated as blunt cracks in an engineering world.  
 
 

 
 

Figure 6: Mode II stresses ahead of the crack tip in pure shear.  Here  Λ = -1,   = 45O,   = 0O,   D = 10 mm,  b = 0.001 mm, and  
rho = 10-7 mm.  The stresses  sigma x  and  sigma y  are of course zero, from symmetry. 
 
Fig. 7 presents the Mode II shear case, but stresses are given for a   = 45O  line emanating from the crack tip.  Again all 
stresses fall to zero at the crack tip, whereas the LEFM solution makes all stresses infinite.  Peak stresses values are found 
subsurface, at a distance of one radius of curvature from the notch root.  LEFM should only be used after ten radii of 
curvature from the crack tip.   
 

 
 

Figure 7: Mode II stresses on a 45O plane emanating from the crack tip in pure shear.  Here  Λ = -1,   = 45O,   = 45O,   D = 10 
mm,  b = 0.001 mm, and  rho = 10-7 mm. 
 
 
FATIGUE FAILURE PROCESS ZONE 
 

learly Mode II shear cracks can propagate under the right conditions, as discussed in the Introduction.  One way, 
probably the only way to explain this is to introduce the concept of a process zone.  This should not be confused 
with the plastic zone, which corresponds with a zone of cyclic deformation that is essential to developing and 

controlling the fatigue damage process.  However apart from cyclic (and reversible) deformation, we also need a crack tip 
region where failure or decohesion can take place.  This region is far smaller than the plastic, with dimensions much the 
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same as the crack growth increment per cycle.  It is about equal to the crack tip opening displacement of a growing crack, 
or twice the radius of curvature.  We can call this the “fatigue failure process zone”. 
In Fig. 7, the curves plotted are a repeat of Fig. 5 for stresses ahead of a shear crack, but with two potential fatigue failure 
processes zones added.  The smaller zone falls in the region of zero or low stress, and therefore corresponds to non-
propagating shear cracks.  All a crack can do is branch to follow a tensile mode path, as observed in the “Sheffield” 
experiments.  This non-propagating condition was all but inevitable because of the large radius of curvature of the spark-
eroded starter crack.  A process zone (or crack growth rate) of order 0.1 mm would be required for shear mode growth, 
which is far too big to be practical.  Hence branching is observed in practice. 
However in Otsuka’s test, a four point bending sample was used, and this permits pre-cracking in fatigue, in simple 
bending to produce a sharp initial fatigue crack.  With a much smaller crack tip radius of curvature, the fatigue failure 
process zone appears as the larger example in Fig. 7.  So long as the zone extends beyond the peak in shear stress in the 
figure, then the intensified stress can interact with the failure process, and shear mode growth can occur.  The intensity of 
stress can be calculated by integrating the shear stress over the zone to obtain an average value, and that provides the 
driving force for fatigue failure.  
 
 
DISCUSSION AND CONCLUSIONS 
 

t has been demonstrated that the Savin solution can provide the full field of stresses around the crack tip, so long as 
the radius of curvature at the crack tip can be identified.  Some shortcomings of LEFM have been identified, which 
can explain the difficulty of predicting growth of shear mode cracks, unless the intensity of stress is correctly 

identified.  Radius of curvature can be calculated from the Dugdale model for crack tip opening displacement, for Mode I.  
Even for Mode II, in the Introduction it was seen that a degree of crack opening is needed for frictionless crack face 
sliding, so this can be used to estimate the radius of curvature for real cracks. 
Fig. 8 is worth discussing, as it points towards a method to make the Savin technique more acceptable as a practical 
procedure.  This is essentially the same as Fig. 4, but the vertical axis is logarithmic.  Secondly a constant factor of 0.25 has 
been added to the dimensionless factor plotted on the abscissa.  This factor was chosen arbitrarily to make the line for 
normal stress straight, with a slope of -0.5.   
Also in the figure, there are results for five different ellipse semi-widths, while  D  is kept constant at 10 mm.  For  b = 10 
mm, we have a circular hole rather than a crack like defect.  Semi-widths of 1, 0.1, 0.01, 0.001 mm all fit the same unique 
line for the near tip stress field, diverging from the line only for the far field response.  So a simplified fit to the stress field 
is possible here.  Stress equations will be functions of the angle  φ , as well as the non-dimensional parameters in the 
figure. 
 

 
 

Figure 8: Mode II stresses ahead of the crack tip in pure shear, showing a small fatigue failure process zone that is too small for 
propagation, and a large fatigue failure process zone that permits growth.  Here  Λ = -1,   = 45O,   = 0O,   D = 10 mm,  b = 0.001 
mm, and  rho = 10-7 mm. 
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Figure 9: Mode I stresses ahead of the crack tip, for different radii of curvature.  Here  Λ = 0,   = 90O,   = 0O,   D = 10 mm,  b = 
0.001 mm,  rho = 10-7 mm, for sigma y, sigma x, and tau xy.  Results for  sigma y  only are shown for  b = 10, 1.0, 0.1 and 0.01 
mm.  Note all fracture mechanics results lie on a straight line of slope  -0.5.  The stress  tau xy  is of course zero, from symmetry. 
 
So for successful shear mode crack growth, one should control the sharpness of the crack tip to ensure the fatigue failure 
process zone is sufficiently large to generate a satisfactory stress intensity.  Secondly, a mechanism to reduce friction 
between sliding crack faces is essential, as discussed in the Introduction. 
Finally real cracks are rarely mathematically flat, and roughness induced closure is frequently sufficient to prevent sliding 
deformation at the crack tip.  Some of the complications of rough and three-dimensional fracture surfaces are reviewed by 
Miller et al. [7]. 
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