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ABSTRACT. Failure in continuum media, either solids or liquids, can be regarded as a physical phenomenon 
which mathematically can be identified by the fulfilment of a limit condition usually involving the stress state 
inside the material.  By considering classical failure theories for solids (plasticity and fracture mechanics 
approach) and a recent theory on the rupture (cavitation) for liquids, common peculiarities of the failure 
conditions for both classes of materials are presented.  Finally, by introducing a stress field parameter, the stress 
triaxiality t, which can be used to identify the limit condition of collapse for both classes of the considered 
materials, some unified considerations on failure of solids and liquids are made.  It is shown that the collapse 
functions for both classes of continuum materials present a similar form. 
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INTRODUCTION 
 

ailure in continuum media (solids or liquids) can be regarded as a physical phenomenon which occurs when a limit 
condition depending on the stress field is fulfilled.  In isotropic media, failure conditions can conveniently be 
written in terms of the stress invariants and deviatoric stress invariants.  By analysing the failure of ductile or brittle 

solids, the classical theory of plasticity and fracture mechanics concepts can be used, respectively, whereas the occurrence 
of the so-called cavitation must be examined for the failure of liquids.  
In the present paper, a unified discussion about such failures mechanisms shows that the collapse formulation is similar 
for both classes of continuum materials (solids and liquids).  By introducing a stress field parameter (the stress triaxiality), 
the limit conditions of collapse for both the above classes can simply be represented through the same equation by 
properly setting the involved material parameters, the values of which give us useful information about the kind of 
expected failure. 
Local collapse of continuum media, both solids (mainly brittle solids) and liquids, frequently appears as a loss of continuity 
of the material.  The above phenomenon occurs through the formation of cracks (fracture collapse) or high strain 
deformation zones (due to plastic flow) in solids, or through the appearance of voids or bubbles (due to the cavitation 
phenomenon) in liquids. 
Collapse of solids has been widely analysed in the literature.  The classical plasticity theory [1, 2] has been applied to recent 
studies on crystal plasticity [3, 4].  On the other hand, fracture mechanics concepts, developed from the pioneering 
researches carried out by Griffith [5, 6] and Westergaard [7] up to subsequent works by Liebowitz [8] and Sih [9], have 
been applied to recent studies on fracture at microscopic level and nanoscale level [10, 11].  Liquid collapse, also called 
liquid cavitation, has been studied by several Authors [12-18].  By adopting a stress-based approach to describe the failure 
phenomena in solids and liquids [4, 12], similar governing equations can be found. 
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FAILURE IN SOLIDS 
 

ailure in solids can be regarded as a phenomenon which involves an irreversible re-arrangement of its micro-
structure accompanied by a dissipation of energy.  Such a modification of the material structure can appear either 
as a plastic flow due to the sliding - at the microscopic scale - of the lattice structure of the material, characterised 

by high plastic strain level (typical of the so-called ductile materials) or as a continuity loss due to a high strain localization 
(as usually occurs in brittle materials), leading to material separation (crack formation). 
Fracture in solids usually takes place due to the growth and coalescence of micro-cracks or voids, produced by the high 
stress state level in the material, up to the formation of a macro-defect which can mathematically be described as a strain 
localisation in a narrow band which identifies the fracture position. 
Typical approaches to examine the fracture phenomenon are based on either the Stress-Intensity Factor (SIF) value 
(descending from the classical Westergaard solution in linear elastic fracture mechanics, LEFM [7]) or the energy criterion 
proposed by Griffith [5, 6]. 
The criteria to describe catastrophic fracture occurrence under pure Mode I can be written by the following inequalities 
related to the critical SIF ( ICK ) and the energy approach, respectively [5, 6]: 
  

ICII KaYK   0 ,   ICEa GG  /  2
0       (1) 

 

where IY  is the so-called geometric correction factor (or dimensionless SIF), 0  is the applied remote stress, a  is a 

characteristic size of the existing crack, G  is the fracture energy, ICK  and ICG  are the fracture toughness (critical SIF) 
and the critical fracture energy at given environmental conditions, respectively. 
The two critical parameters can be joined together by the classical relationships: 
 

 /2 EKICIC G (plane stress)     /1 22 EKICIC  G (plane strain)     (2) 
 

The above fracture mechanics approaches assume that the fracture process starts from a pre-existing crack, with 
characteristic size a , which instantaneously grows when the critical condition (Eq.1a or Eq.1b) is fulfilled.  In the case of 
absence of any defect, fracture mechanics erroneously states that  no failure occurs, whatever the stress level in the body.  
In macroscopically non-damaged solids, the failure process can also be regarded as a breaking or a decohesion 
phenomenon, which occurs when a sufficiently high stress level is greater than the tensile strength tf  of the material.  The 
failure stress, in a general case, can be identified by one of the following conditions: 
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where the remote stress 0σ  is applied to the solid.  From such expressions, failure-type can be identified through the 

characteristic flaw size 0a : 
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In the context of plasticity, a general and common failure criterion, which has a wide applicability for several materials, is 
the so-called Drucker criterion [2], usually expressed by means of the stress invariants as follows: 
 

021  kJI            (5) 
 

where k,  are material parameters that can be determined from the uniaxial tensile and compression strengths, tf  and 

cf , of the material.  For compressive hydrostatic-insensitive materials, the parameter    is approximately equal to 
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 33   and k  is equal to p3  (with p  the hydrostatic failure compressive stress), and the criterion (5) becomes 

pJI 333 21    or equivalently: 
 

pJ   23  with  3/3/ iitr   σ   ( 2/ σtr ) the 3D (2D) hydrostatic pressure (6) 
 

Among the various parameters to identify the ‘stress state quality’ in a point of a continuum, the stress triaxiality factor t  - 
that is, the ratio between the mean hydrostatic stress and a quantity that measures the root of the distortional energy - can 
be used [19-23]: 
 

2122 3/// 
3

1
JIJJtrt  σ         (7) 

 

It can be deduced that t  for purely hydrostatic stress states, 0t  for purely shear stress states, 3/1t  for a 
uniaxial 3D stress state and 1t  for a uniaxial 2D stress state.   By using such a definition, the condition (3) for 2D 
problems can be written as follows: 
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where the remote maximum principal stress has been written in this way:  )1(21 tJ  . As a matter of fact: 
 

)1(222211 tJJtJJS         (9) 
 

where 1S  is the principal stress of the deviatoric stress tensor. 
On the other hand, by considering the Drucker plasticity collapse criterion, we get: 
 

222

k
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          (10) 

 
and, in the particular case expressed by Eq. (6), the criterion becomes:  
 

ptJ  )3(2           (11) 
 

The above failure expressions (8, 10) can be summarised in the following general equation: 
 

BtJ  )(2            (12) 
 

where B,  are constants related to material behaviour, as is discussed below. 
It can be observed [24-28] that the stress triaxiality represents a simple parameter to identify the type of collapse: stress 
triaxiality lower than zero ( 0t , pure shear) produces a shear-type plastic flow collapse, which can be identified as a 
special case of the fracture process, while positive triaxiality produces a void formation-type fracture process (fracture 
along a direction normal to the principal stress) [27, 28].  Experimental observations [21] have shown that fracture never 
occurs for 3/1t . 
 
 
FAILURE IN LIQUIDS 
 

t is a common observation that liquid failure takes place by the appearance of voids or bubbles with loss of 
continuity and, as is well-known, with the corrosion of solid in contact which such broken liquid zones. 
The knowledge of the state of stress in a liquid is fundamental to evaluate the possibility of its breaking.  The stress 

state ijσ  can generally be written as follows: 
 

][uτ1σ  p           (13) 
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where p  is a scalar that represents the hydrostatic pressure (typically a positive value of p  indicates hydrostatic 
compression in liquids), 1  is the identity tensor, and τ  is the shearing stress tensor which can be determined by an 
appropriate constitutive law depending on the liquid under consideration.   Usually, the shearing stress tensor τ  can be 
written as an appropriate function of the velocity, as in the simple linear constitutive equation for a Newtonian liquid: 

][2][ uDuτ   , where   is the dynamic viscosity, and )(2/1)(2/1][ ,, ijji
T

ij uuD  uuuD  is the symmetric part 

of the gradient of the velocity vector 3,2,1   , iui . As is well-known, for an incompressible liquid: 

0][  ,  iiutrdiv uDu  (mass conservation equation). From the previous equation, it can be stated that 

0])[2(   uDτ trtr , )( ,, ijjiij uu   , and the mean hydrostatic pressure becomes: 3/iip  .  The above 

equation also holds for a liquid in a static condition ( 0][ uD ) for which the hydrostatic pressure p  represents the 
average of the principal stresses. 
In a flowing liquid, the hydrostatic pressure is )( 3/1 τσ  trp   since  0 τtr  for compressible or non-Newtonian 
liquids [16, 18].  In this case, Eq. (13) can be rewritten as follows: 
 

S1τ1σ  p           (14) 
 

where )( 3/1 τσ  trp , τσ   3/1  3/1 trptr  , and S  is the deviatoric stress tensor for which 0  iistr S  
holds (in liquids, the scalars p  and   are assumed positive for hydrostatic compression stress states). 
The failure phenomenon in a liquid is known as cavitation, and takes place by the formation of bubbles. Such a 
phenomenon is classically identified by the following condition [18]: 
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where )(Tpc  is the cavitation threshold pressure (negative, i.e. tension in liquids) of the examined liquid at a given 
temperature T .  For liquids in motion, the above condition can be written by taking into account the principal stresses 
instead of the average pressure p  which is meaningless in such a case [18].  The principal stresses in the coordinate 
system coincident with the principal stress directions can be determined (the stress tensor has a diagonal form in such a 
coordinate system): 
 

S1S1σ  diag)( diag diag          or S diag

100

010

001

00

00

00

3

2

1








































  (16) 

 

In 2D problems, we have the following expression: 
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where σ  2/1 tr , the principal stresses of the deviatoric tensor S  are equal to 2/12
12

2
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1122 )( ssS   (since 2211 ss  ), and the term   ijijijs  is the generic component of S  ( ij  being the 

Kroneker delta function). Since the principal stresses of the deviatoric tensor S  are: 2/)( 21111  S , 

2/)( 21222  S  and the maximum difference between the maximum ( 1 ) and the minimum ( 2 ) principal stress 

is equal to  11221121 2 SSS  , the rupture condition (Eq.(15)), formulated in terms of the maximum principal 
stress, becomes: 
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When the above condition is fulfilled, a slit vacuum cavity initially opens in a direction perpendicular to the maximum 
tension axis.  Subsequently, the flow vorticity can rotate the major axis of the ellipse (see Fig. 1), and vapour fills the 
created cavity [18].  If also cpS   222 , then the cavity opens also along the other principal direction. 
 

U

h

x2

x1

2 1

1 2

 
Figure 1:  Scheme of the cavitation phenomenon in a liquid under shear flow. 

 
The above criterion must be corrected in presence of impurities (such as pre existing bubbles, impurities, etc.) which 
facilitate the cavitation phenomenon.  If a ‘defect’ with a characteristic size a  is supposed to exist in a point of the liquid, 
then Eq. (15) can be written as follows [16]: 
 

)(/)() ,(1 TpaTKTap ccc         (19) 
 

where )(TKc  is a material parameter for a given temperature T . 
Similar to the case of collapse in solids, the cavitation phenomenon in general takes place when the following condition is 
fulfilled [16]: 
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Defining the stress triaxiality factor analogously to the case of solids (see Section ‘Failure in solids’): 2/ Jt  , with 
2
1222112 sssJ  , the maximum principal stress can be rewritten as follows:   2/12

12
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cptJ  )1(21    or  cptJ  )1(21   by defining as negative hydrostatic tension (21) 
 

 

As can be observed also under pure shear ( 0t ), liquid rupture can occur when cpJ 2 .  If a high level of 

hydrostatic compressive pressure exists ( 0t , since 0  for hydrostatic compression in liquids), 

0)1(21  tJ  and cavitation never occurs.  Some examples of fracture collapse in solids and fluids are given in 

Fig. 2. 
 

 
 

Figure 2:  Fracture collapse  in (a) ductile or  (b) brittle solid material, and (c) rupture (cavitation) in a liquid 
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DISCUSSION  
 

rom the previous Sections, we can deduce that the failure condition for unflawed or flawed solids (see Eqs (3, 10)) 
and liquids (see Eqs (15, 20)) presents a mathematical structure which can be written as follows: 
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where the same definition of   is used for both solids and liquids, i.e. σ  2/1 tr .  In the above general relationship, a 
difference in the meaning of the stress 1σ  must be taken into account: the failure in liquids takes place in the point where 
the principal stress attains the maximum value (the imperfections are assumed to be equally distributed in the liquid 
domain), whereas the stress 1σ  in solids must be interpreted as the reference stress (applied to the structure) that produces 
the critical value of SIF. 
Further, it can also be remarked that the failure conditions in unflawed solids (Eq. (10)) and liquids (Eq. (15)) have a 
similar form which can be summarised in this way: 
 

BtJ  )(2            (23) 
 

where the material constants B,,  depend on the mechanical material behaviour and the presence of defects.  The 
values assumed by the three parameters involved in Eq. (23) are reported in Tab. 1. 
 

 

Material Mechanical behaviour 
Failure parameters 

 and defects     B  
Solids Unflawed  brittle 

Unflawed general 
+1
+1 

+1
2/  2/k

ft  

 Flawed brittle +1 +1 aE IC  /)( G  

Liquids Unflawed -1* +1 ) ( Tpc  
 Flawed -1* +1 aTKTap cc /)() ,(   

 

Table 1:  Parameters involved in the general failure function,  BtJ  )(2  , for unflawed and flawed solids and liquids in 2D 

problems (* Eq. (21b) has been used to define stress triaxiality sign). 
 
The fail safe domain expressed by Eq. (23) can graphically be represented in the 2Jt    co-ordinate system. 
Such a domain is shown for brittle and Druker-like solids (right-hand side in Fig. 3) and liquids (left-hand side in Fig. 3). 
It can be observed that curves for liquid media are characterised by positive values of the stress triaxiality for the 
hypotheses on the hydrostatic sign (positive compressive hydrostatic stress, top horizontal axis), while the opposite holds 
for solids (positive tensile hydrostatic stress, bottom horizontal axis). 
Several values of the material parameters have been examined for solids, while water at environmental temperature has 
been used for the example related to liquids ( KPapc 3.2  at 20ºC is the maximum tensile stress at which cavitation 
occurs in water). 
As can be observed in Fig.3, the curve trend is similar for all cases studied, and indicates that the allowable distortional 

energy 2J  leading to failure, decreases by increasing the stress triaxiality t .  In particular, no cavitation occurs for 1t  

( 1t  if the stress triaxiality sign hypotheses for solids is adopted), while no rupture takes place in solids for 0t . 
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Figure 3: tJ 2  relationship at collapse for unflawed solids and liquid (water).   Regions below the lines 2 ( )J t B       

represent fail-safe stress states. 
 
 
CONCLUSIONS  
 

n the present paper, failure in continuum media (solids or liquids) has been regarded as a physical phenomenon 
which is determined by the fulfilment of a limit condition. 
By taking into account the classical plasticity or the fracture mechanics theory to describe the failure of solids and the 

theory of the cavitation phenomenon to describe the failure of liquids, a unified formulation has been presented, showing 
that collapse functions present a similar form for both classes of continuum materials (solids or liquids). 
By examining 2D cases, a stress field parameter (the stress triaxiality) allows us to express the limit conditions of collapse 
for both classes of materials through a single equation, i.e. the structure of the governing failure equation for both solids 
and liquids is the same.  By appropriately setting the involved material parameters, the failure function can explicitly be 
written.  The values of such parameters can give us useful information about the kind of expected failure. 
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