

9 POLITECNICO DI MILANO

IGF- Gruppo Italiano Frattura Giornata di Studio sulla Fatica ad atissimo numero di cicli Torino, 5 novembre 2008

RESISTENZA A FATICA AD ALTO NUMERO DI CICLI DI MATERIALI COMPOSITI PULTRUSI

(HIGH-CYCLE FATIGUE STRENGTH OF COMPOSITE PULTRUDED MATERIALS)

C. Colombo, <u>M. Guagliano</u>, L. Vergani

Dip.to di Meccanica, Politecnico di Milano, Via La Masa, 1 20156 MILANO mario.guagliano@polimi.it

- Pultrusion is one of the most attractive technological process for obtaining polymer matrix composite parts to be manufactured with large production rates and volumes.
- ✓ Due to this characteristic and to some peculiar aspect of their physical and mechanical behaviour, pultruded composite are getting more and more used in structural applications in civil infrastructure.
- Pultruded materials are becoming a serious alternative to metal alloys for the construction of shaped beams, pedestrian bridge decks, post for railway noise barriers, floors of bus and other structural parts.
- ✓ However, their application in structural engineering is still somewhat limited by the incomplete knowledge about the fatigue strength.

Some structural applications of pultruded materials

M. Guagliano – Fatigue of pultruded materials

3

C. Moura Branco et al., A comparative study of the fatigue behaviour of GRP hand lay-up and pultruded phenolic composites, Int. J. Fatigue 18 (4) (1995), 255-263.

T. Keller, T. Tirelli, A. Zhou, Tensile fatigue performance of pultruded glass fiber reinforced polymer profiles, Composite Structures 68 (2005), 235-245.

L. Vergani, Damage mechanisms in pultruded unidirectional fiber reinforced composites under static and fatigue loads, in: M.Guagliano, M.H. Aliabadi (Eds.), Fracture and Damage of Composites, WIT Press, Southampton, 206, pp.49-72.

T.J. Chotard, J. Pasquiet, M.L. Benzeggagh, Residual performance of scarf patchrepaired pultruded shapes initially damaged, Composite Structures 53 (201), 317-331.

T. Keller, H. Gürtler, Quasi-static and fatigue performance of a cellular FRP bridge deck adhesively bonded to steel girders, Composite Structures 70 (2005, 484-496.

T. Keller, F. Riebel, T. Vallée, GFRP posts for railway noise barriers – Experimental validation of load carrying performance and durability, Composites Structures 85 (2008), 116-125.

•To investigate the fatigue strength of a composite pultruded materials in the high-cycle fatigue range.

- •To assess the existence of a fatigue limit for this material
- •To investigate the fatigue failure mechanisms by means of SEM and optical microscope observations.

•Glass-fiber reinforced composite obtained by pultrusion.

•Matrix made of equally distributed polyester not saturated resins commercially called Leguval W 24 GA and Synolite 0175-N-1. The global density of the matrix is about 1,3 g / cm³.

•The glass fibers have a ultimate tensile strength of 1800 MPa, an elastic modulus of 76 GPa and a volumic mass of 2.53 g/cm³.

Section from which the specimens were cut

Lay-up of the section from which the specimens were cut

Position	Width (cm)	Material	Mass per unit length (g/m)	Roving mass per unit length (g/m)	Weight %
1	17	SONTARA	5.95		
2	6	SONTARA	4.2		
3	16	MAT	48		
4	5	MAT	30		
5		ROVING		960	
6	21	VOLUMAT	126		
7		ROVING		547.2	
8	21	MAT	63		
9	23	SONTARA	8.05		
10	5	SONTARA	3.5		
11	4	REEMAY	0.8		
		Total woven	289		16
		Total roving		1507	84
	l		Total resin	1796	57
s of the pultruded			Total glass	1354	43
			Total weight	3150	100

Chemical composition of the layers of the pultruded material (the position refers to the figure).

M. Guagliano – Fatigue of pultruded materials

POLITECNICO DI MILANO

Lay-up of the section from which the specimens were cut

Layer definition in a generic section of the samples.

SEM micrograph showing Mat, Roving and Volumat layers.

POLITECNICO DI MILANO

SEM micrographs of Mat (a), Roving (b) and Volumat (c) layers.

9

Shape and dimension of the samples used in the static tests (ASTM D 3039/D 3039 M-00; EN ISO 527-5: 1997).

POLITECNICO DI MILANO

10

	Specimen	E (MPa)	UTS	Elongation	Failure	Failure zone
			(MPa)	%	type	
	1	30605	367	1,20	DGM	Middle
Tensile	2	30794	377	1,23	DGM	Middle
	3	31005	377	1,21	DGM	Middle
tests	4	30003	361	1,20	DGM	Middle
	5	28791	381	1,32	XGM	Middle
	Mean	30240	373	1,23		
	value					

	Specimen	E (MPa)	UCS	Elongation	Failure	Failure zone
			(MPa)	%	type	
	1	31311	454	1,45	DGM	Middle
Compres-	2	27296	383	1,40	DGM	Middle
	3	26607	382	1,43	DGM	Middle
sion	4	26973	375	1,39	DGM	Middle
tests	5	31313	402	1,28	DGM	Middle
	Mean	28700	399	1,39		
	value					

Summary of the results of the static tests (DGM= edge Delamination Gage Middle, XGM=eXplosive Gage Middle)

Typical aspect of a DGM failure: (a) tensile failure, (b) compression failure.

12

- •Axial fatigue tests (R=-1) were executed, being the aim the determination of the S-N curve of the material and to verify the existence of a fatigue limit.
- •The specimens had constant section and their geometry is the same o the static tests.
- The specimens were considered run-out if failure did not occur till 10.000.000 cycles.
- •The results were elaborated by following the ASTM E 739-91 standard.

A specimen broken near the gripping zone.

S-N curve of the pultruded material (Run-out=10E+07 cycles)

POLITECNICO DI MILANO

Defect count in the fatigued run-out specimens

	Mat	Roving	Volumat
Debonding	67	25	60
Fiber Cracks	30	15	8
Matrix cracks	5	0	0

SEM images of the fatigue specimens: (a) Mat, (b) Roving.

M. Guagliano – Fatigue of pultruded materials

POLITECNICO DI MILANO

15

Static and fatigue tests were executed on pultruded composite specimens. On the basis of the results the following conclusions can be drawn:

- The static tests showed good uniformity and to assess that failure is mainly due to edge delamination gage middle (DGM).
- •The fatigue tests showed the existence of a fatigue limit and a limited dispersion of the results.
- •The main fatigue failure mechanism is the formation of cracks between matrix and fibers.
- •The influence of the specimens geometry and of thr gripping device is observed.