

Fatica ad altissima numero di cicli Torino, November 5, 2008

Fatigue Crack Initiation, Propagation and Failure at Very-High Numbers of Cycles

Stefanie E. Stanzl-Tschegg

BOKU University of Natural Resources and Applied Life Sciences Vienna, Austria

Contents

 Very high cycle fatigue (VHCF), fatigue crack growth (FCG) and ∆K thresholds at ultrasonic frequency

Experimental procedure and results:

S-N and $(\Delta a/\Delta N - \Delta K)$ curves of different materials Influence of environment and frequency

 Plastic deformation, crack initiation, propagation and failure in copper in the VHCF range (20 kHz)
 Persistent slip bands (PSBs)

Endurance limit , $\Delta a/\Delta N~$ and ΔK threshold

VHCF and FCG Behaviour

5 novembre 2008

Existence or Non-Existence of

Endurance Limit and Threshold Stress Intensity

VHCF – Testing Times

Number of cycles	20 Hz	20 kHz
10 ⁶	14 hours	50 sec
10 ⁷	6 days	8 min
10 ⁸	2 months	1.4 hours
10 ⁹	1.7 years	14 hours
10 ¹⁰	17 years	6 days
10 ¹¹	170 years	2 months

BOKU University 1915

Ultrasound Measuring Technique

BOKU University 2004

Principle of Ultrasonic Resonance Fatigue Loading

Resonance vibration at approximately 20 kHz

•Ultrasonic Transducer:

Piecoelectric, axial or torsional

•Magnification Horn: Increases the vibration amplitude by a factor of 4 to 15

> •Specimen: Length and shape follows resonance criteria, Surface condition is important Smooth or notched

GRUPPO ITALIANO FRATTURA

Ultrasonic Fatigue Loading – Experimental Procedure

- Frequency 19 kHz
- Fully reversed loading (R=-1)
- Cooling (damping heat): compressed air pulse-pause sequences
 - pulses: 150 ms (2700 cycles) periodic pauses: 2000-3000 ms
- Induction sensor measures vibration amplitudes
- Closed loop control
 of vibration amplitudes
 (total strain)

Ultrasound Testing Equipment

- Amplitude sensor
 - $\Delta I \rightarrow \epsilon = \Delta I / I \rightarrow$

 $\boldsymbol{\sigma} = \boldsymbol{E} \boldsymbol{\cdot} \boldsymbol{\epsilon} \to \Delta \boldsymbol{K}$

- Free specimen end \rightarrow R = -1
- Both specimen ends fix $\rightarrow R \ge 1$
- Cooling Pulse-Pause

+ Compressed air

• Environmental chambers (corrosion, temperature, vacuum)

5 novembre 2008

Ultrasonic Testing Procedure

Amplitude feed-back control

Determination of the process:

Vibration Amplitude: After calibration Pulse and Pause: Depending on damping Frequency limits: Stop when specimen failure **Control Circuits:**

Vibration Amplitude: Accuracy ±1%

GRUPPO

FRATTURA

Resonance Frequency: Accuracy ±1 Hz (0.005%)

Pulse 50 ms - approx. 1000 amplitudes Increase Time - approx. 100 amplitudes Decay Time - depending on damping

Torino 5 novembre 2008

Shapes of Fatigue Specimens

Wrought alloy

Cast alloy

Specimen Shapes - Fatigue Crack Growth

Fully Reversed Loading

Torino 5 novembre 2008 Superimposed and Mixed Mode Loading

Ultrasonic Fatigue Testing Procedure – Mechanical Components

Testing in different environments

Vacuum High and low temperature Corrosive Fluids

Testing at different loading conditions

Superimposed mean loads (R>-1) Superimposed torsion moments

Testing in vacuum

Stefanie Stanzl-Tschegg

5 novembre 2008

Torino

Random loading

Endurance Limit - Threshold Stress Intensity

VHCF Aluminium and Magnesium Alloys

Non-propagating crack High-pressure die cast AlSi9Cu3

1.05x10⁹ cycles, 47.5 MPa (78 % of mean endurance strength at 150 °C)

Maximum length of non-propagating cracks: 1.2 mm

Fracture surface (after increase of load)

Mayer H, Kolloquium Werkstoffe, Fertigung, Konstruktion, Siegen 2004

GRUPPO ITALIANO FRATTURA (IGF)

Torino 5 novembre 2008

VHCF Aluminium and Magnesium Alloys

Non-propagating crack High-pressure die cast AZ91

1.51x10⁹ cycles, 38 MPa (90 % of mean endurance strength at 150 °C)

Maximum length of non-propagating crack: 1.6 mm

Fracture surface (after increase of load)

Mayer H, Kolloquium Werkstoffe, Fertigung, Konstruktion, Siegen 2004

Torino 5 novembre 2008

VHCF X20Cr13 Steel

Crack Initiation from Internal Inclusions

Axial 20 kHz Tension-Compression Loading X20Cr13: 11.3 Cr, 0.2 C, 0.22 Al (940°C / oil quenched, hardening 400°C/2.5 h)

$\Delta \sigma$ = 620 MPa, N_f = 8.48x10 ⁸

$\Delta \sigma$ = 700 MPa, N_f = 1.3x10⁸

Stanzl-Tschegg, DGM Meeting Berlin, June 2006

5 novembre 2008

Crack Initiation from Interior Inclusions

Crack initiation from ca. 10-20 μ m Al₂O₃, CaO, MnS, MgO inclusions after ca. 10⁸ – 10⁹ cycles

EDAX Analysis (Wt%)

	a)	b)
AI:	22.40	18.44
S:	24.55	27.06
Ca:	17.74	22.5 9
Mn:	6.96	5.80
Mg	6.07	4.49
Fe:	5.34	8.81

Stanzl-Tschegg, DGM Meeting Berlin, June 2006

GRUPPO ITALIANO FRATTURA (IGF)

Crack Initiation from Interior Inclusions

Axial 20 kHz Tension-Compression Loading X20Cr13: 11.3 Cr, 0.2 C, 0.22 Al (940°C / oil quenched, hardening 400°C/2.5 h)

Interior crack initiation from Carbide inclusion

ALIANO

EDAX Analysis (wt%) Fe: 64.10 Cr: 10.01

Stanzl-Tschegg, DGM Meeting Berlin, June 2006

Torino 5 novembre 2008

Papakyriacou M, Mayer H, Plenk H, Pypen C, Stanzl-Tschegg SE, Mat Sci Eng A 308, 2001, 143-152

Yield strength $R_{p0.2} = 385$ MPa Endurance limit at 2x10⁸ cycles: 240 MPa - 20 kHz 220 MPa - 100 Hz Niobium: No frequency effect

Torino 5 novembre 2008 Yield strength $R_{p0.2} = 240$ MPa Endurance limit at 2x10⁸ cycles: 365 MPa - 20 kHz 290 MPa - 100 Hz Tantalum: Frequency effect

- No influence of plastic deformation rate on $\Delta a/\Delta N$ (vacuum)
- Frequency effect at $\Delta a/\Delta N > ca.10^{-9}$ m/cycle owing to air humidity
- No frequency effect on $\Delta K_{threshold}$

Torino 5 novembre 2008

Frequency Effect on S-N and ∆a/∆N curves - Summary

Frequency effect present

- At high loads close to yield stress (e.g.Tantalum!)
- → Testing of strongly damping material problematic
- At higher crack growth rates in corrosive environment

No frequency effect

- Al-alloys
- High-strength steels
- Titanium alloys Ti-6AI-7Nb and Ti-6AI-4V
- Mg high pressure die cast alloy

Mechanisms of Fatigue Damage

Crack initiation mostly from **SURFACE IMPERFECTIONS** like

or from INSIDE

inclusions,...

Relevance of PSBs in copper for crack initiation, propagation and life times (endurance limit?) in the VHCF range

Material and Specimen Shape

- Electrolytic copper (DIN1787/17672/1756)
- Cylindrical, 7 mm diameter, 80 mm long Hourglass **shape**, inner diameter: 3mm
- 750°C /75 min, vacuum/ air cooled
- Mean grain size: approximately 60 µm
- Mechanical and electrolytical polishing (2V, 42 mA/cm²)
 - Calibration:

Induction sensor at specimen end Strain gages along the whole specimen length to measure total axial strain amplitudes ϵ_{tot}

Experimental Procedure

Ultrasonic test:

- Not stress ($\Delta\sigma/2$) controlled, but
- Displacement or *total strain* ($\Delta \varepsilon_{tot}/2$) (strain rate, $\Delta \varepsilon'_{tot}/2$) *controlled*
- Plastic strain ($\Delta \epsilon_{pl}/2$) control not possible

Therefore \rightarrow

1. step: Calibration: Determine $\Delta \epsilon_{pl}/2$ 2. step: Experiment: Ramp loading

Determination of Stress Amplitude Δσ/2 in "ductile" material

Identification of PSBs: Re-appearance of Slip Bands after Electropolishing PSBs and Reloading

→ "Conventional" PSB threshold $\Delta \sigma/2 \approx 63$ MPa ($\Delta \epsilon_{pl}/2 \approx 6.1 \times 10^{-6}$)

After polishing

Initial loading 2x10⁶ Load direction: top to bottom.

GRUPPO ITALIANO FRATTURA (GF)

Stefanie Stanzl-Tschegg

+ Reloading 2x10⁶ cycles

PSBs in VHCF range also *below* PSB threshold

→ "VHCF" PSB threshold $\Delta \sigma/2 \approx 45$ MPa ($\Delta \epsilon_{pl}/2 \approx 3.6 \times 10^{-6}$), N ≈ 2x10⁸

∆σ/2 ≈ 50 MPa (∆ε_{pl}/2 ≈ 4.1x10⁻⁶)

Initial loading 2x10⁸ cycles (Load direction: top to bottom) After polishing

+ Reloading 2x10⁶ cycles

Structure and Development of PSBs (SEM)

5 novembre 2008

Structure and Development of PSBs (SEM)

 $N = 3,3x10^8$

 $N=5,0x10^8$

 $N = 2.0 \times 10^9$

 $\Delta \sigma =$ **59,2 MP**a

~ 3.0 MPa below PSB threshold

 $N=1,0x10^9$

Slip Band Formation at and below PSB Threshold: Appearance of first (P)SB

Torino 5 novembre 2008

Increasing Number of PSBs with ∆σ/2 and N

PSB Structure and Surface Roughness

Measurement: **SEM and MeX – 3D** profile analysis software

 $\Delta\sigma/2 = 62.1 \text{ MPa}$

 $\Delta \sigma/2 = 62.1 \text{ MPa}$ N = 5x10⁸ cycles

PSB Structure and Surface Roughness

Measurement: SEM and MeX – 3D profile analysis software

Measurement of Surface Roughness

AFM Topometric Explorer

in contact mode, set point 10 nA, Si_3N_4 pyramid tip, 50° angle, 50 nm radius

PSB Structure and Surface Roughness

Plastic replica and SEM

 $\Delta\sigma/2$ = 100 MPa, N = 1 x 10⁷ cycles

Surface Roughness

MeX – 3D profile analysis software

 $\Delta \sigma / 2 = 100 \text{ MPa}$ N = 1x10⁷

Direct SEM: Intrusion depth: 353 nm

Replica: Intrusion depth: 362 nm

(a)

Summary: Surface Roughness

Increase of surface roughness with $\Delta\sigma/2$ and N

Roughness			
Δσ/2	Mean	Min.	Max.
34 MPa	~ 20 nm	~ 14 nm	~ 30 nm
\downarrow	\downarrow	\downarrow	\downarrow
60 MPa	~ 200 nm	~ 80 nm	~ 350 nm
\downarrow	\downarrow	\downarrow	\downarrow
<u>100 MPa</u>	~ 400 nm	~200 nm	~1000nm

E.g. Surface roughness ~ 200 nm for $\Delta\sigma/2 \sim 60$ MPa, N ~ 10¹⁰ (mean of three measuring techniques) - high local variation.

Dislocation structure (TEM)

$\Delta \sigma/2 \approx$ 64 MPa (~ 1 MPa above PSB Threshold (≤ 63 MPa)) 1,5x10¹⁰ cycles

Dislocations clusters and cells

Torino

5 novembre 2008

Fatigue life diagram, 19 kHz: Wöhler (S-N) plot

Dislocation structure (TEM) close to endurance limit

 $\Delta \sigma/2 \approx 94$ MPa, N = 1,2x10¹⁰ ~ 1 MPa above fatigue limit (≤ 93 MPa)

Torino 5 novembre 2008

PSB Threshold ("conventional" as well as "VHCF") and Endurance Limit are Different

	"Conventional" PSB Threshold (N ~ 10 ⁶)	"VHCF" PSB Threshold (N ~ 2.6x10 ⁸)	"Endurance Limit" (N _f = 1.14x 10 ¹⁰)
$\Delta \varepsilon_{tot}^{}/2$	4.88 x 10 ⁻⁴	3.49 x 10 ⁻⁴	7.27 x 10 ⁻⁴
$\Delta \epsilon_{pl}/2$	6.1 x 10 ⁻⁶	3.6 x 10 ⁻⁶	2.1 x 10 ⁻⁵
Δσ/ 2	63 MPa	45 MPa	93 MPa

How does ΔK_{th} correlate with $\Delta \sigma_o$? \rightarrow Fracture Mechanical Measurements

Measurement of Crack Propagation

Ultrasound Fracture Mechanics

Torino 5 novembre 2008

Comparison $\Delta K_0 - \Delta \sigma_0/2$ (Kitagawa Diagram)

Reasons for difference of PSB Threshold and Endurance Limit?

Numerous small cracks, but *no long crack* **below endurance limit** (Δσ/2 ~ 87 MPa)

Torino 5 novembre 2008

Formation of LONG cracks above endurance limit, but only SMALL cracks below endurance limit

Formation of long propagating cracks (VHCF, 19 kHz)

- at $\Delta \sigma$ and $\Delta \epsilon_{pl}$ values ~ 50% above "conventional" PSB threshold
- necessary "short" crack (or notch) length (from Kitagawa diagram) ≥ 340 µm
- at "conv." PSB threshold crack length actually only $\leq 20 \mu m$

Below endurance limit, above PSB threshold:

numerous non-propagating small cracks

 \rightarrow stress relaxation of loaded volume

Above endurance limit, $\Delta \sigma$ or ΔK high enough for

long propagating crack

failure

Summary

- Ultrasonic fatigue technique most efficient for VHCF testing.
- S-N curves beyond 10⁸ up to several 10¹¹ cycles → question on existence or non-existence of fatigue limit may be answered ("fish-eye" fractures…).
- Analogous: ($\Delta a / \Delta N vs. \Delta K$) curves down to 10⁻¹⁴ m/cycle \rightarrow (non)-existence of $\Delta K_{threshold}$
- No frequency effect for most technical alloys.
- Frequency influence for very ductile materials and in corrosive environment ABOVE $\Delta K_{threshold}$

Summary

- Tests on **polycrystalline copper**:
- PSBs form below "conventional" PSB threshold (63 MPa)
 PSB formation depends on amplitude AND number of cycles ("VHCF threshold": 45 MPa)
- Endurance limit ($\Delta \sigma_0$): Failure at $\Delta \sigma$ = 93 MPa after 1.1x10¹⁰ cycles. No failure below $\Delta \sigma_0$ within 2x10¹¹ cycles.
- Correlation of ΔK_{th}, Δσ₀ and relevance of PSB threshold Kitagawa diagram → Critical short-crack length is ~340 µm for ΔK_{th} At/below PSB threshold: actual crack length ~ 20µm → No long crack propagation → no failure

Thanks for your attention!

