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FRACTURE BEHAVIOUR OF A SOLID WITH RANDOM POROSITY:
EXPERIMENTAL ANALYSIS AND SIZE-EFFECTS

Alberto CARPINTERI, Bernardino CHIAIAT and Stefano INVERNIZZI!

An innovative experimental methodology has been developed to
analyse the microstructural characteristics of concrete, responsible
for many peculiar features of the fracture phenomenon. By means
of a completely authomatised laser system, the three-dimensional
morphologies of concrete can be digitised. Considering planar cross-
sections of the virgin material, the pore and void distribution can
be easily extracted from the laser-scanned topography. This pro-
cedure, which yields the effective depth and shape of the pores,
permits to overcome the drawbacks and ambiguities of traditional
image analysis techniques, where dark particles often confuse with
pores. Calculating the fractal dimension by means of two different
algorithms, allows us to confirm the lacunar fractal character of the
stress-carrying section.

INTRODUCTION

In the study of continuous media, we are concerned with the manner in which forces
are transmitted through the medium. The Cauchy definition of stress [o] relies on
some “regularity” properties (continuity and measurability) of the medium. Eu-
clidean measurability implies the scale independence of mechanical laws. Moreover,
differentiability allows to write the equations of mechanics in terms of differential
equations. If a macroscopic description of the stress field is desired, classical me-
chanics is sufficiently accurate. On the other hand, when singularities and inhomo-
geneities are present, or when the structure of the body plays a fundamental role in
the definition of the physical properties, different approaches are required.

Defects are present at all scales in engineering materials and interact with each
other in a complex manner. Attempts to describe these phenomena by classical meth-
ods are deemed to be incomplete. For example, size effects are not explicable in the
classical framework. Different models should be considered in the presence of strain
localization and large stress gradients (c.g. fracture problems). However, random-
ness alone cannot justify the self-organised complexity which comes into play in the
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fracture of concrete. On the contrary, the invariant features can be put into evidence
in the framework of Fractal Geometry. Modelling the microstructure by means of
fractal domains permits to capture the hierarchical aspect of damage accumulation
and crack propagation. Carpinteri (1) assumed that the Hausdorff dimension of the
stress-carrying domains in concrete were lower than 2.0 due to inherent flaws (voids,
pores and cracks). Therefore, lacunar fractal domains (possessing fractal dimension
A lower than the topologic dimension) can be used to model the stress-carrying cross
sections in real materials.

The Menger sponge can be considered as a fractal model for a porous solid. It
is shown at the third iteration in Fig. la, and its Hausdorff dimension is equal to
A =1og20/log3 = 2.73. The sponge has zero volume and possesses very peculiar
mass properties related to its non-compactness. In fact, if sponges of different linear
size are compared, one notes that the nominal density p decreases with size according
to a non-integer exponent equal to A — 3. Thereby, the nominal density is not
significant, because depends explicitly on the specimen size d (Fig. 1c). In particular,
as d tends to infinite, p tends to zero (a lacunar fractal set is asymptotically a point
set, with null euclidean measure). This is confirmed by natural sponges, where the
larger the specimen size, the higher the probability of encountering a large void. It is
worth to point out the profound difference existing between such a power-law scaling
and a classical exponential decay law in the form p(d) = e(=%/40)  In this last case, in
fact, dy represents a characteristic length, whereas fractals are characterized by the
absence of characteristic scales (Carpinteri & Chiaia (2)). Planar cross sections of
the Menger sponge are Sierpinski carpets, whose iteration scheme is shown in Fig. 1b.
This set presents zero area (A = log8/log3 = 1.893) and can be considered as a
lacunar cross-section inside a porous medium.

Because the Euclidean measure (length, area or volume) of lacunar sets is scale-
dependent and tends to zero as the resolution increase, the Cauchy definition of stress
cannot be applied. In fact, since the stress-carrying area progressively decreases with
increasing the resolution of the observation, the local values of the stress are not scale-
independent. The “regularity” properties of Euclidean sets are lost and are replaced
by non-differentiability. On the other hand, self-similarity comes into play, providing
a particular symmetry in the problem (dilatation symmetry). In the framework of
Fractal Geometry, finite measures can be performed by using lengths raised to A.
Accordingly, the stress concept needs to be revised and scaling laws must be included.

An original definition of the fractal stress acting upon lacunar domains has
been put forward by Carpinteri (1). If the fractal measure d® of the set is adopted,
it is possible, by applying a renormalisation group transformation, to define a renor-
malised stress 0* acting upon the fractal set: [0*] = [F][L]™®. From the mechanical
point of view, this anomalous definition of the stress flux permits to explain the
scale effects undergone by the tensile strength of heterogeneous materials. It can be
easily proven that, according to the power-law scaling of the stress-carrying domain,
the nominal strength undergoes a negative size-effect characterized by a fractional
exponent, in the log g, —log d diagram, related to the fractal dimension A (Fig. 1d).

In this paper, several concrete cross sections, digitised before the loading appli-
cation, are analysed. The experimental procedure, which yields the effective depth
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and shape of the pores, permits to overcome the drawbacks and ambiguities of tra-
ditional image analysis techniques, where dark particles often confuse with pores.
Several analyses have been carried out, and the fractal nature of the real stress-
carrying domains has been investigated by means of three-dimensional numerical
tools. It is worth to remind that, if load were applied, a larger damage would be
present, and more rarefied sets would be obtained.

EXPERIMENTAL METHODOLOGY

The main purpose of the experimental methodology, entirely developed at Politecnico
di Torino, is to digitize the three-dimensional topography of surfaces at the meso-
scale. The surface heights measurement is performed by means of a laser profilometer,
by counting the number of wave-cycles between the ray emission and the ray reception
after the reflection on the specimen surface. The specimen to be analysed is rigidly
framed into a solid truss, whereas the horizontal position of the distanziometer is
controlled by two orthogonal micrometric step motors. The step motors interface
and the data acquisition board that convert the analogical signal provided by the
laser are both plugged in the same PC motherboard. A dedicated software provides
extreme versatility and the full automation of the surface acquisition process. The
digitised surfaces can extend over a 50mm x 100mm area, and a 2um maximum
precision can be achieved, both in vertical and horizontal direction.

In the study of the microstructural morphology of concrete it is useful to digitise
planar cross sections obtained by cross-cutting undamaged specimens. These surfaces
appear almost flat (Fig. 2a), with localised distribution of moon-like craters due to
the intersection of the cutting plane with the inherent microstructural flaws. The
presence of cavities is responsible for an effective resisting cross section that is less
dense and compact than the nominal cross section. Furthermore, in real situations,
the porosity is not uniform, and the relative percentage of voids depends on the linear
size of the considered section.

The true stressed domain is made out of the points that do not belong to
the craters, i.e. to the pore structure. Hence, from a theoretical point of view,
the actual resisting section can be evaluated by considering the set of points whose
heights are exactly equal to the cutting plane height. Practically, the obtained surface
is not absolutely plane and presents a low uniform roughness due to the cutting
process that can be confused with porosity. For this reason, another virtual plane
has been considered, parallel to the cutting section, but at a lower height, which is
able to intersect only the real cavities (Fig. 2b). The points whose height is greater
than the virtual plane height, are considered to belong to the real stress-carrying
domain, while the remaining points belong to the (complementary) void set (Fig. 2¢).
This procedure allows to filter out the noise produced by cutting. However, some
information is lost about the finer porosity. To perform the virtual cut, it is also
necessary to determine the mean real cutting plane by a detrending algorithm.

In Fig. 2d, the evolution of the fractal dimension of the effective cross section is
shown as a function of the virtual plane height. While the calculation of the fractal
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dimension will be described in the next section, it is worth noting the rather sharp
decrease of the dimension as far as the cutting noise comes into play. If one were able
to quantify the effect of this noise, the virtual plane height would be unequivocally
defined.

FRACTAL ANALYSIS

The fractal dimension of the effective stress-carrying domain has been calculated
using two different algorithms.

Based on the concept of covering, the box-counting method estimates the fractal
dimension as a function of the vanishing order of the covering area. The number of
boxes Nj, needed to cover the set, is calculated for a decreasing value of the side
d of the square covering element. The stress-carrying cross section is a self-similar
lacunar fractal in a statistical sense. Then the following equation holds:

. log Ni
Bvox = 0 S ()’ M
From the slope in the bilogarithmic diagram (Fig. 3a), the fractal dimension of the
effective ligament, Aoy = 1.92, can be calculated. As expected, A is lower than the
Euclidean value (2.0).

The fractal dimension can be also evaluated by referring to the mass logarithmic
density. If the effective cross section were characterised by a uniform distribution of
cavities, it would be possible to calculate the density defined as the ratio between
the effective area Ay and the nominal area Anom. In the actual case, this density
can not be unambiguously calculated, because it depends on the resolution and on
the size of the considered area. In fact, the complex distribution of the pores causes
the probability of finding large cavities to be higher as the size of the considered
area increases (like in a natural sponge, Mandelbrot (3)). The classical density is not
constant, but decreases by increasing the nominal size. To obtain a scale-invariant
value, it is necessary to refer to the logarithmic density, defined as:

llog Aest . @)
0g Anom

If d is the linear size of the considered area, the fractal dimension Ay, can be
evaluated as the limit slope of the bilogarithmic diagram (log Aeg versus logd). In
the case of Fig. 2¢c, the value Al = 1.92 was determined, in good agreement with
the box-counting method.

As a final remark, it is our opinion that this value is too high, even for an
undamaged specimen. Improved cutting techniques, able to minimize the influence
of noise, should reveal the presence of micro-porosity, which would lower drastically
the density and compactness of the stress-carrying domains.

Plog =
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Figure 1 Generation of the Menger Sponge (a), and of the Sierpinski Carpet (b).
Scale-dependence of the nominal density for lacunar sets (c), and of the nominal
strength defined over the same sets (d).
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Figure 2 Digitized concrete surface (a). Scheme of the virtual section (b).
Stress-carrying cross section (c). Fractal dimension vs. virtual section height (d).
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Figure 3 Box-counting method: number of covering boxes vs. resolution (a). Loga-
rithmic density: effective area vs. resolution(b).
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