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LOADING RATE DEPENDENCE OF FRACTURE PROPERTIES FOR
ENGINEERING PLASTICS

Z. Major and R. W. Lang™

To characterize the time dependent fracture behaviour of high density
poly(ethylene)  (PE-HD) and  poly(oxy-methylene)  (POM),
instrumented impact tests were performed with a servohydraulic test
system using various specimens under bending and tensile loading.
The objectives of this study were to develop and implement a test
methodology and a data recording and reduction scheme for various
test speeds and impact rates (0.0001 to 8 m/s), and to determine the
effect of the impact rate on the fracture toughness of PE-HD and
POM. The data reduction to determine dynamic fracture toughness
values was carried out according to different procedures taking
account of the various impact rates and the specific deformation
behaviour of the materials tested.

INTRODUCTION

For many engineering applications, impact fracture behavior is of prime practical
importance. While impact properties of plastics are usually characterized in terms of
notched or unnotched impact fracture energies, there has been an increasing tendency
to also apply fracture mechanics techniques over the last decade (1, 2). However, due
to dynamic effects several special problems are encountered in high rate fracture testing
(1, 3, 4). While the control of dynamic effects at impact rates up to 1 m/s frequently
makes use of mechanical damping in the load transmission by placing a soft pad
between the striker and the specimen, for intermediate impact rates above 1 m/s to 10
m/s, dynamic techniques (1, 3), may be applied. Furthermore, for this impact rate range, a
modified tensile type specimen geometry together with damping elements has been
suggested by other investigators to determine fracture toughness values with the
conventional force based method (4). The objective of this study was to develop,
implement and compare different test methodologies and data recording and reduction
schemes to determine impact rate dependent fracture toughness values for two
semicrystalline polymers. Included in the investigations were bending and tensile
specimens which were exposed to impact rates from 0.0001 to 8 m/s using a
servohydraulic test system instrumented for high rate testing.
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EXPERIMENTAL

Materials and Specimens

Two polymeric materials, commercial grade poly(oxymethylene) (POM) (Hostaform C
2552, Hoechst AG, Frankfurt/Main, D) and commercial grade poly(ethylene) (PE-HD)
(Daplen 3964, PCD Polymere, Linz, A), were used in this study. The POM was supplied
as extruded sheets with a nominal thickness of 10 to 12 mm. The PE-HD was
compression moulded to plaques with a nominal thickness of 10 mm. Single edge
notched bending (SENB) and compact type (CT) specimens according to a configuration
defined in (1), and single edge notched tensile (SENT) specimens according to a
configuration defined in (5) were machined from the sheets and plaques, respectively,
and subsequently notched razor blade precracked and side grooved. The side grooving
for SENT specimen was 20 % of the nominal thickness. The normalized crack length,
a/W (a being the crack length and W the specimen width), ranged from 0.45 to 0.55.

Testing and Data Acquisition

A fully digitized servohydraulic test machine (MTS 831.59 Polymer Test System, MTS
Corp., Minneapolis, USA) was used to perform all of the tests. The striker for the SENB
specimens and the fixture for the CT and SENT specimens was equipped with a piezo
load cell (Kistler 9041A). The load-point displacement associated with the striker
movement was determined from an LVDT signal of the piston. For impact rates above 1
m/s some specimens were also instrumented. In several test series, strain gages (CEA-06-
032UW-120, CEA -06-062UW-350, Measurements Group Inc. Raleigh, USA) were
applied to the specimen near the crack tip.

Data Reduction

Typical examples of force/load-point displacement curves of SENB specimens for
impact rates of 0.1 m/s, 1 m/s and 3.3 m/s are shown in Fig. 1 for POM and PE-HD.
While the recorded non-damped signal at 0.1 m/s is of sufficient quality to directly
determine the fracture force, F_, significant force oscillations are visible in the non-
damped signal at 1 m/s. An equivalent diagram for a loading rate of 1 m/s with a
plasticene damping material placed at the striker tip is also shown in Fig. la and
compared to the non-damped case. Force oscillations are seen to be significantly reduced,
thus allowing again for a direct determination of F_. For a loading rate of 3.3 m/s the
inertial forces apparently overshadow the true mechanical response of the specimen.
Hence, a force based analysis is not possible in this case.

For POM loaded at impact rates up to 1 m/s in case of the SENB specimens and up to 8
m/s in case of the CT specimens, fracture toughness values, K., were calculated as
follows:

F
K, :ﬁf(%y) )
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where F, is the fracture force, B is the specimen thickness, W is the specimen width, and
a is the crack length.

In sharp contrast to POM, PE-HD reveals distinct non-linear load-displacement
characteristics with an Fp,,,/Fq ratio larger than 1.1 (see Fig. 1b). However, once Fpay is
reached, unstable crack propagation in a quasi-brittle fracture mode occurs. As expected,
the degree of non-linearity decreases with increasing test speed; simultaneously the
maximum force is also slightly reduced up to 3 m/s. As the methodology of linear elastic
fracture mechanics (LEFM) to determine K. is not applicable for the high degree of non-
linearity observed, a data reduction scheme based on critical value of the J-integral up to
Fmax Was applied. Accordingly, critical values for J; and K. were determined as follows

(5):
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where J. is the critical J-integral value and K. is the apparent fracture toughness
accounting for the non-linear load-displacement response. As to the the other terms in
egs. (2) and (3), Ueicor and Upicor respectively, are the elastic and plastic energies up to
Foax With indentation correction, ne and my, respectively are the elastic and plastic
geometry factors for the SENT specimen geometry (6), v is Poisson’s ratio, and E is
Young’s modulus. The proper time dependent E values were determined with different
techniques described elsewhere (7).

Examples of force/load-point displacement curves for the tensile loading mode
specimens of the CT and SENT type are shown in Fig. 2 for POM and PE-HD for impact
rates of 0.1 m/s, 1 m/s, and 3.7 m/s. In contrast to the results with bending specimens
(i.e., SENB) in Fig.1, which indicate a limit of about 1 m/s for a data reduction scheme
based on load-displacement records, the load-displacement results of the tensile load
specimens in Fig. 2 apparently are of sufficient quality to determine fracture force values
even at loading speeds above 1 m/s. It is also interesting to note, that the tensile mode
SENT specimens of PE-HD reveal a much reduced non-linearity in the load-
displacement trace when compared to the corresponding result of SENB specimens
(compare Figs. 1b and 2b). The improved signal quality of the tensile mode CT and
SENT specimens over the bending type SENB specimens is a result of the higher
specimen and contact stiffness associated with the former specimen configurations as
well as the more effective damping situation in the loading unit.

To characterise the real material response of POM with SENB specimens at
impact rates above 1 m/s, specimens were instrumented with crack tip strain gages (Fig.
3). Fig. 3a shows a typical example of corresponding striker force and the strain gage
signals. To determine accurate values for time-to-fracture, t;, both signals are required.
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While the striker signal is more accurate in defining the point of initial load
implementation, the strain gage signal reveals a delayed load implementation response.
On the other hand, the striker signal reveals no indication of where fracture initiation
oceurs, a point which can clearly be deduced from the strain gage signal. Based on the
crack tip strain gage signal, K|, values may be determined according to various methods
@3, 7.

RESULTS AND DISCUSSION

Experimental results for the effect of the strain rate on KIC and K. for POM and PE-HD,
respectively, are shown in Fig. 4 for various specimen geometries, including also side
grooved specimens of PE-HD to enhance the constraint at the crack tip upon loading and
to favour the tendency for brittle fracture. The testing rates in these experiments covered
the range from 0.0001 to 8 m/s (approximately five decades). Based on the testing rates,
local crack tip loading rate values (dK/dt), were obtained according to a procedure
described in (1). In general, for both materials good agreement is found in the results for
various specimen configurations.

For POM (Fig. 4a) K, is seen to continuously decrease with increasing
loading rate up to about 5x10° MPam'”s”. Above this loading rate rate, the results with
CT specimens and instrumented SENB specimens indicate a knee in the K-strain rate
dependence with a stronger drop-off in fracture toughness. The comparison with the
results of non-instrumented SENB specimens indicates that this technique is limited to
local crack tip loading rates up to about 5x10°> MPam'?s™ (corresponds to impact rates of
up to about 1 m/s). Using these K;. results together with strain rate dependent yield stress
values of the POM material investigated, it could be shown that the plain strain fracture

toughness concept is applicable (7).

Compared to the results for POM, the apparent fracture toughness K. of PE-HD
(see Fig. 4b) reveals a much more pronounced crack tip loading rate dependence in the
range from 10" wup to 5x10° MPam'’s”’, with K;. values dropping from about 10
MPam'” to 3 MPam'?. At 5x10° MPam'?s’! apparently a minimum in the K,.-dK/dt rate

dependence occurs, an explanation of which needs further investigations.

SUMMARY AND CONCLUSIONS

To characterize the dynamic fracture behaviour of POM and PE-HD, instrumented
impact tests were performed in the testing rate range from 0.0001 to 8 m/s with a
servohydraulic test system using various fracture mechanical specimens and data
reduction methods. In general, good agreement was found in the results obtained by
different methods for each of the materials, revealing a reduction in the characteristic
fracture toughness values, K;c and K, for POM and PE-HD, respectively, with increasing
impact rate up to at least about 5 m/s. In agreement with previous considerations (8), this
fracture toughness decrease is thought to be a result of the viscoelastic nature of these
materials revealing an increase in yield stress with increasing strain rate and the
corresponding reduction in crack tip plastic zone size.
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Figure 1: Load/Displacement records for SENB specimens of POM and PE-HD at impact

rates of 0.1 m/s, 1 m/s and 3.3 m/s
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Figure 2: Load/Displacement records for CT and SENT specimens of POM and PE-HD at

impact rates of 0.1 m/s, 1 m/s and 3.7 m/s
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Figure 3: Striker force and strain gage signal (Fig. 3a) and strain gage signals at various
testing rates (Fig. 3b) for POM (specimen type: SENB)
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Figure 4: Effect of loading rate on K, and K, for POM and PE-HD, respectively, using various
specimen geometries
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