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A GENERAL MICROMECHANICAL APPROACH TO THE STUDY OF THE
NEAR- SURFACE BUCKLING IN FIBROUS COMPOSITES

Yu. N. Lapusta*

This paper describes a general unified approach to the study of
buckling- like phenomena and includes a statement of the problems,
development of a method for their solution, and a discussion of
numerical results. The study is carried out within the framework
of the model of a piecewise-uniform medium with the involvement
of the three-dimensional linearized theory of stability.

INTRODUCTION

Buckling phenomena as well as the interaction of reinforcing elements and free

boundaries are very characteristic of unidirectional composites or fibre-reinforced -
outer layers of composites or products under compression. The most accurate re-

sults on these phenomena in composites can be obtained through employment of

rigorous micromechanical approaches when three-dimensional linearized equations

[1] are applied to each constituent of the internal structure. Here such problems

are considered on the micro-level as applied to a system of fibres near the matrix

boundary. :

MAIN ASSUMPTIONS

We introduce local Lagrangian coordinates (74,8, 25) and (g, ¥q, T3,) coinciding in
the initial state with a circular cylindrical coordinate systems and a rectangular
coordinate systems, respectively.
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The z, axes are directed along the fibre axes while the z3, axes lie at the free
boundary of the matrix. The quantities corresponding to the fibres are denoted by
the superscript ”a” and the quantities relating to the matrix - by the superscript ”m
”q” denotes the number of a certain fibre. In a general case, the fibres and matrlx
are assumed to consist of transversally isotropic compressible elastic materials. A
compressive loading is applied in such a way that the deformations of the fibres and
matrix along the axes z, are equal to each other: €92 = €™, We assume that there
exists a complete or a sliding contact at the interfaces between the fibres and the
matrix. For the complete contact we should satisfy the continuity conditions for the
forces and displacements at the cylindrical surface ry = R in the form

Br= B, V=B, PE=IT,
W=l wl=uf,  w=ul,  (r=R) (1)
For the sliding contact we have
P3 = P, uld =l P =0,
Pt =0, P} =0, P, =0, (rq = R) (2)

The two cases ((1) and (2)) are treated in a similar manner. Therefore, we perform
further consideration on the example of the case (1). We demand satisfaction of the
following conditions on the free surface

Py =0, Py =0, P =0, (y1 = 0). (3)

We further assume that the precritical states of the fibres and matrix are homoge-
neous:

o° o0 — Oagq om _
22 F O zz’ 0,9 =0, 099 =0, o =0, ‘760 =0. (4)

The assumption of the homogeneity of the precritical states of the fibres and matrix
is based on the results presented in [2]. Formulae (4) are exact when the transverse
expansion coefficients of the fibres and the matrix coincide.

FORMULATION OF THE PROBLEMS AND THEIR SOLUTION

Equilibrium equations for the fibres and for the matrix in terms of displacement
disturbances have the form

[ ltaﬁua ﬁ]" =0, [wir?aﬁugl,ﬁ]vi =0,

where coefficients w;,! ; and w7, 5 depend on the precritical states and properties of
the materials of the fibres and matrix, respectively. Expressions for these coefficients
for various material models and different variants of the linearized three-dimensional
theory of stability can be obtained from [1]. Employing the general solutions of the
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three-dimensional linearized equilibrium equations [1] for homogeneous precritical
states to each component of the composite, we reduce the problem to the following
formulation in terms of the potentials ™, x™, ¥*? and x*?

It is necessary to find the minimal nontrivial solutions of the equations
m 82 m m2 62 m2 62 m
(Ar+ G 2515)¢ =0, (&+@ 52)@1 +@ 52?))( =0, (5

written down for the matrix and the following equations for the fibres

(8145 2”’”"0 (M1 4G5 o+ 57 2 =0, ()

under conditions (1), (3) and the conditions of decay of the matrix displacements at
infinity in the form

ult — 0, uf' — 0, ul' =0 (yq — o0) (7

Expressions for the coefficients ("2 and (*?, depending on the w5 and wig g
respectively, have the form

2 -1 . 2 1
(i = wa113@ia213 2= c % (c? — wassswiyhwanawizs )

2cw1111W1331 = W1111W3333 + W1331W3113 — warnwiizz(wiziz + wssn) (8)

It is necessary to add in (8) the appropriate superscripts "m” or "a”, denoting the
correspondence of a value to the matrix or the fibres. Usually, for elastic materials,
92 =L,(32 (2L (7*? and they are positive real numbers.

We search solutions in the most general form including all possible stability loss
with allowance for the interaction between the fibres and the free surface. For the
matrix, we have:

oS oo
Y™ = vsinyz Z {Z AT K (T yrg) sinnfy + Z A;lnq’ll\"n(q”'yrq) cosnf,+
geEM n=1 n=0

+00
+ Z A’l':fl / Vi1 (1) exp(—(T" cosh tyy,) sin[(]" sinh tyzq|dt+

+ Z Z AT / Vi (1) exp(—/¢1% + (72 sinh? tyy,) sin[CF" sinh tyzgldt+
k=2 n=0
oo m +OO
Z ARY, / Vi1n(t) exp(—C]" cosh tyy,) cos[(T" sinh tyzg]dt+ 9)
n=0 oo
3 oo 0o
+ Z A;’:lqk / V;lkn(t) exp(— {"2 + C;Tz sinh? t7y,) cos[(E sinh tyz,]dt}
k=2 n=0 hed
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Functions x™ are constructed in the form similar to (9). Here y = /-1, [ is length
of a halfwave of a stability loss form. A;’::]-,A;';qyj are unknown coefficients and
Viiin(t), Vi;n(t) are unknown functions to be defined from the boundary conditions,
M is a set of the fibre numbers.

For the fibres we have

oo [o <]
% = vsin 'yz{z AR} L (Cyry) sin b, + Z A5} L ((fyry) cos b, }

n=1 n=0

3 =] 0
x* = cos'ﬂ{z A;L?z,s Z Alllgl,sln((:'ﬂq) cos nf, + Z A;Z,sln(C:VTq) sinnf;} (10)

=2 n=0 n=1
Solutions thus constructed exactly satisfy equations (5), (6). We further distinguish
between two main cases. If the system fibres- matrix has some planes of symmetry
(as in problems for a single fibre, a symmetric pair of neighbouring fibres in a
matrix or a periodic series of fibres) this can simplify further mathematics and
implementation of the solution techniques. In this case, as a rule, we can consider
individually possible modes of stability loss. In the second case (an arbitrary system
of fibres in a matrix without any symmetry) we should use solutions in their most
general form, as they appear in (9) and (10). For the latter case, we proceed as
described below: 1) We represent solutions for the matrix in one of the rectangular
coordinate systems, say (z1,¥1,21) in the form of improper integrals and introduce
them into (3). As a result, we obtain systems of equations for the determination of
the unknown functions under the integral sign. 2) Then, substituting the solutions
for the matrix represented in the coordinate system (79,84, 29) together with the
solutions for the fibres into (1), after a change of variables , we obtain an infinite

homogeneous system of equations in the form

2 (9] (o)
BIEXT+ BEXP+ 3 () QI X 4+ Q2 vy = o,

n€EM n=0 n=0
2 oo oo

DY+ DY + 3 (D QIO X+ 3 Qv =0, (1)
neEM n=0 n=0

(a=1,2; k=0,1,2,3,...)
3) From the condition of existence of non-trivial solutions we derive a characteristic
equation
A(p,k) =0 (12)

where A(p, k) is the determinant of (11). On the stage of calculations we perform the
following actions: 4) we fix the values of the stiffness and geometrical parameters of
the problem; 5) solving equation (12), we obtain all possible relations (dependences)
P =p(k),(j€ J) , where p is a loading parameter and k = v R is a wave formation
parameter; 6) we determine the minimal values of parameter p for each function
P/(K): pm = minggo p’(k); 7) we determine the critical value of this parameter:
Per = minje,/(p’,',.). The value of k., corresponding to p,,, determines the length of
the halfwave of the realizable stability loss mode by the formula ., = TReL.
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RESULTS AND DISCUSSION

Numerical investigation is carried out with v = vm = 0.3 and different values
of the geometrical and stiffness parameters of the problem. Selection of the same
value for v, and vy, is justified by the fact that the value of pr in the problems of
instability of fibrous composites under compression is not substantially influenced by
the difference between v, and vy, in a wide range from 0.1 to 0.4. We also note that
for the values of v, and vy, considered here, formulae (4) for the precritical state are
satisfied exactly. Figure 1 demonstrates values of contraction pl. (curvel) and p2,
(curve 2) for the case E,E;' = 1000 in relation to the parameter §R~'. Calculations
have been carried out for a series of fibres parallel to the matrix boundary with
different thicknesses of the bridge between neighbouring fibres (parameter §) and
the thickness of the bridge between the series and the free surface (parameter B)
equal to 0.5R. pl, corresponds to the stability loss mode for which all fibres lose
stability in the same phase and the fibre axes remain in the planes perpendicular to
the matrix boundary. p?, corresponds to the stability loss mode for which all fibres
lose stability in the same phase but the fibre axes go out of these planes. Curve
3 corresponds to the limiting case BR™! — oo. Figure 2 shows the dependence of
per on E,E ! calculated with allowance for three periodical series of fibres near the
matrix boundary (curve 1). The thickness of the bridge between neighbouring fibres
and the thickness of the bridge between the fibres from the first series and the free
surface have been taken equal to 0.5R. The curve No.2 corresponds to the limiting
case when the thicknesses of these bridges is sufficiently large (tends to infinity).

It follows from the results obtained that the mode of stability loss of a system of
fibres that is realized near the free boundary of a binder depends on the parameter
B. This may be a mode which does not occur in the case of an infinite matrix for
the same combination of the geometric and stiffness parameters. We consider this
as an evidence of the need to rigorously account for the effect of the free surface of
the matrix on the stability of a system of fibres. The effect of the free surface is
always magnified by the mutual interaction of fibres during stability loss (the latter
significantly depends on the parameter §). Some quantitative conclusions can be
derived directly from Figures 1 and 2.
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