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CALCULATION OF THE ASYMPTOTIC CRACK TIP FIELDS FOR A DYNAMIC
CRACK GROWTH IN DUCTILE-POROUS SOLIDS

B. Potthast and K.P. Herrmann*

In this paper, the asymptotic crack tip fields for fast running cracks in
pressure sensitive, ductile-porous solids are determined. For the con-
stitutive description of pressure sensitive porous solids, reference is
made to the Tvergaard/Needleman yield criterion (1), (2) with an as-
sociative flow law which is an extended version of the Gurson model.
Crack tip fields in solids show a singular behaviour at the crack tip.
The strength of this singularity depends in a dominant manner on the
material behaviour as well as on the crack tip velocity as it was al-
ready shown by Achenbach et al (3) and Herrmann and Potthast (4).
Therefore, the second focus is to quantify the singular behaviour of the
crack tip fields for different material parameters and crack tip veloci-
ties.

INTRODUCTION AND MATERIAL LAW

A focus of this paper is a characterization of the model parameters in view of their influ-
ences on the crack tip fields. For that purpose the material model of Tvergaard/ Needle-
man is transferred to the elastic-plastic model of a crack tip surroundings of a stationary
growing crack. The solutions are assumed to be of a variable separable form with a radial
singular behaviour. The asymptotic stress- and velocity crack tip fields are numerically
obtained by using the incremental theory, a stationary crack growth, plane stress condi-
tions and mode I-loading. Studies concerning pressure sensitive porous materials and
quasistatic crack growth have been performed by Radi and Bigoni (5).

For the mathematical description of the problem, we adopt a yield criterion by
Tvergaard/Needleman. This isotropic/kinematic hardening criterion
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represents a yield criterion for pressure sensitive materials containing a void volume
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fraction £, which is assumed to be constant. Therefore growth and nucleation of voids has
been neglected. According to experimental results the pressure sensitive behaviour fol-
lowing from the porosity is treated in the mid term of eq. (1). For simplicity the addi-
tional quantifying parameters ¢, g, are set equal to one. The stress o, describes the
radius of the actual yield surface of the matrix material and is given by
o,=(0-b)o, +bo,

where 6, and o, are the initial and the actual yield stress of the matrix material. The
mixed or kinematic hardening parameter b e [0.1] describes the portion of kinematic
hardening. The hardening is pure isotropic if #=1 and pure kinematic if »=0. The
stress tensor b, denotes the deviatoric part of B, = o, —a, , where o, denotes the back
stress tensor. Following references (1), (2) as well as eq. (1) the necessary evolution law
for G, can be stated as

3)

G,.=bs, .

If é(,_{” denotes the effective plastic strain rate, then the macroscopic plastic strain

rate zi:(/”) is assumed to be related to £ by

l/

4
B, &0 =(1- f)o, &V . “@

Assuming a bilinear material behaviour of the matrix material, the relation be-
tween the effective plastic strain rate and the actual yield stress of the matrix material
becomes

£ :ﬁd,‘ , (5)
EE,

'

where v denotes Poisson’s ratio, £ the young’s modulus and E, the tangent modulus in
the uniaxial tensile test. Furthermore the Prager consistency must be fulfilled. Therefore,

O 5, + 2% 5, + 9% 5 ¢ (6)
do, da, 0o,

must be fulfilled. For the presented material law, the basic equations of the continuum
mechanics, which consist of the well known equations of motion and the associative
incremental strain decomposition

E-;(I]): {l 8\4/ [a\u GHJ} or 8(/,):/\ aW (7)
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have been adopted, with A as the plastic multiplier.
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It is recognizable, that the governing equations of the crack problem consist of a
family of partial differential equations. Thereby the dot denotes the material time differ-
entiation. Regarding the derivations of the yield criterion (egs. (6), (7)), the relation
A = o, A and the evolution law for the back stress tensor

; 8)
a, =pip; .
then the plastic multiplier A becomes
§W76’/ C 2 1 9
o ,
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oy C oy G, 00, b
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aGH c £ ac/ll/!

For the evaluation of eq. (9) a coincidence between the models of Gurson and Tver-
gaard/Needleman for proportional stress histories has to be assumed.

CRACK PROPAGATION AND ASYMPTOTIC ANALYSIS

It is assumed in an asymptotic analysis that the near tip fields consist of plastic and elas-
tic unloading angular regions. The crack tip region of a propagating crack with the ve-
locity © under Mode I loading conditions exhibits a first plastic region in front of the
crack tip which is surrounded by an elastic region. The second plastic region exists along
the crack surfaces. In order to specify the characteristic behaviour of the stress- and dis-
placement rate fields in the vicinity of the crack tip for a plane stress state and dynamic
crack growth, characteristic separable asymptotic first order base functions for the stres-

ses o, , o, and the displacement rates #, in r and © of the form f(6)= g(6)r" are in-

troduced.

The asymptotic base functions offer the advantage to reduce the partial differen-
tial equation system to an ordinary differential equation system independent of the dis-
tance r to the crack tip (Fig. 1). The constitutive equations and the asymptotic functions
are transferred to the crack tip surroundings. Therefore, the resulting equations for the
Tvergaard/Needleman ") model can be summarized in first-order systems of non-linear
ordinary differential equations

™ML U,z 5, 52, A

ij> =i <l

4 )_ 0 k=9 for plane stress (10)
e ’ k=11 for plane strain’

respectively, where 2, , ,., A,, U, are the stress and displacement rate functions of 6
only. On account of the structure of the equation systems, eq. (10) is integrated numeri-
cally over the crack tip variable 6. Due to the symmetry of the mode I-crack problem, the
integration range of the differential equation system can be reduced to the interval

0= [0 3 rc]. The specification of the differential equation system is performed by formu-

ij ij >
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lating the boundary conditions for 6=0, 8 =7 and the transition conditions between the
elastic and plastic regions.

Elastodynamic crack tip fields

The formulated differential equation systems in the last chapter are valid for the
elastic-plastic regions 0 e [0 : 9,,,], be [GL,, ; 7t] of the crack tip surroundings only. For the

elastic region the solution of the near tip fields follows from (3). For that purpose the
displacement rate potentials

: ; . . 1
o0 oy , 20 P (LT
dx, @x, 0x, O0x,

are introduced, in which ¢ and \y are solutions of the wave equations

. 1 ... N (12)
(P,,f=a;<P > ‘”*"’_F.,%W .

The potentials are connected with the displacement rates through the equations of
motion and the incremental Hooke's law. In eq. (12) C, and C, denote the longitudinal
and transverse elastic wave speeds. For solutions ¢ and \y of the separable asymptotic
form in 7 and 6, an analogous ordinary differential equation system like in eq. (10) can
be installed for the elastic region. The consequence is to design a whole integration

scheme for the integration range 0 € [0 3 n] which distinguishes between the plastic and
clastic regions automatically.

FORMULATION OF THE BOUNDARY VALUE PROBLEM

The specification of the differential equation system is performed by formulating the
boundary values for =0, 6= and the transition conditions as well as the transition

e:eul

(Fig. 1). Regarding a bilinear material behaviour the first transition 0 = 0, occurs if the

values between the elastic and plastic regions for the unknown angles 0 =0,
plastic part of eq. (7) vanishes. This implies that

a\}/ 61(/ =0
oo,

(13)

causes the first transition. The calculation of the second transition is not determined by
an analogous condition to eq. (13) only. The model of Tvergaard/Needleman describes
isotropic and kinematic hardening. Therefore, the angle 6=0, for a second yielding
depends on the stresses a(’N)(rI,, ,9,,,), c‘,?”)(;“,,, ,GI,,) and the additional condition for the
transition for Tvergaard/Needleman’s model leads to

’ 14)
q/(””(c,./ (r.0), a, (rp, , 9/,,), G, (rp, R 9/,,)): 0. (
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A second yielding takes place if the actual stresses o, (r,0) fulfil the yield criterion

(14). This criterion leads to the second transition angle 6,,. The boundary values apply
zero stresses of the crack surfaces for 6 = and the symmetry of the near crack tip fields
due to a mode I-loading situation (4). The calculation of the boundary values for the
stresses o, , the back stress tensor o, and the radius of the actual yield surface of the
matrix material ¢, follows from the equation of motion, the incremental stress-strain
equation, the corresponding yield criterion and the evolution laws of egs. (1) and (2).

NUMERICAL RESULTS

The numerical values of the singularity exponent s for plane stress conditions are given
in Fig. 2 for selected values of a*=E /E and v=0.3. This figure shows that if the

crack speed is less then approximately B, =v \/p/E, < 0.3, then the order of the singu-
larity does not differ significantly from that for quasistatic conditions independent of the
material model. In addition, the results of the singularity exponent are very sensitive to
the ratio o* = £, /E of the bilinear stress-strain relation which has been shown in refer-
ences (3), (4). The pressure sensitivity parameter p* as well as the mixed hardening
parameter b substantially changes the level of the singularity exponent s, whereas the
exponential behaviour of s(B,)remains. Plots of the angle dependent stress fields for
a*=0.5 of the ") -model are shown in Fig. 3 and 4. The curves are normalized such
that =,,(0=0)=1.The calculations are compared with known elastic solutions and
quasi-static solutions of elastic-plastic materials from the literature. The representations
of the stresses show a significant dependence on the crack tip velocity for B, >0.3, a
lower mixed hardening coefficient » = 0.5 reduces the differences a few.

REFERENCES

(1)  Tvergaard, V. ,Influence of voids on shear band instabilities under plain strain
conditions®, Int. J. Fracture, Vol. 17, 1981, pp. 389-407.

(2)  Tvergaard, V. ,Material failure by void coalescence in localized shear bands®, Int.
J. Solids Struct., Vol. 18, 1982, pp. 659-672.

(3)  Achenbach, J.D. and Kanninen, M.F. and Popelar, C.H. ,,Crack-tip fields for fast
fracture of an elastic-plastic material®, J. Mech. Phys. Solids, Vol. 29, 1981, pp.
211-225.

(4)  Herrmann, K.P. and Potthast, B. ,,Ermittlung flieBbruchmechanischer Kenngrofen
fiir dynamische RiBprobleme in elastoplastischen Mehrkomponentenmedien®,
DFG-Report, 1995.

(5)  Radi, E. and Bigoni, D. , Effects of anisotropic hardening on crack propagation in
porous-ductile materials®, J. Mech. Phys. Solids, Vol. 44, 1996, pp. 1475-1508.

1295



ECF 12 - FRACTURE FROM DEFECTS

’

elastic -0.12

*=0.1
0.14| ¢ =7
[ =% b=05
-0.16
S
_ -0.18
% elastic = b=08 -
plastic -0.20 _—
-0.22L
00 01 02 03 04 05 06
B,
Figure 1 Crack tip surroundings of a Figure 2 Exponent s([},) of the crack tip
dynamically propagating crack singularity for the T/N model
1.5 13
1 s“/ 1
0.5 0.7
01 ep =00 0.4
0.5 | =B =05 0.1
aB =0. a*=0.5
q [ PE0E L 0.2 T 90° 15 0
0° 45° 90°  135°  180° 0 45 90 1352 180
2
b=05
1.5 . 1 [=5%
1 a*=0.5
0.6
0.5 B, =0.0
° B, =00 b=0.5 0.2 o B, =05
0 .p =05 f=5% 4B, =0.6
05 «B, =06 a*=0.5 4002 L i q | |
P TTas T o0s 135 T180° 0° 450 90°  135°  180°
Figure 3 Stress fields %, (6) Figure 4 Stress fields %,,(0)

1296





