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NOTCHES AND KINKED CRACKS IN MATERIALS WITH GENERAL
ANISOTROPY

C. Blanco™. J. M. Martinez-Esnaola” and C. Atkinson'

The singular stresses at the tip of an angular notch are analysed for the
most general case of clastic anisotropy. The problem is stated in relation
with the more general problem of a kinked crack. This is modelled by
means of continuous distributions of dislocations which are assumed to
be singular at both crack tips and at the kink vertex, the dominant
singularity at the kink being weaker than at the crack tips and dependent
upon the kink angle and the material properties. A noteworthy result 1s
that the dominant stress field at the notch can be characterised by a
single generalised stress intensity factor in the most general cases where
there is little or no symmetry. The resulting integral equations are solved
numerically with the help of the reciprocal theorem. The stress intensity
factors for modes I, 11 and 11T and the generalised stress intensity factor
at the kink vertex are derived directly from the dislocation densitics.

INTRODUCTION

Most attempts to solve the problem of a kinked crack have been for isotropic materials.
Very few general solutions are available for anisotropic solids and even so, most analyses
are for orthotropic materials. In a neighbourhood of the kinked crack vertex, the stresses arc
singular like 7 with 0 < A < 1/2, r being the radial distance to the vertex (Bogy (1)) but
this has not always been taken into account either because the singularity has not been
considered or because the analyses proceed with a wrong singularity » 12 at the vertex.

This paper summarises an analysis of the vertex singularity for an arbitrary angle n
the most general case of elastic anisotropy. This is used to model the kinked crack as a
continuous distribution of dislocations that is singular at both crack tips and at the vertex of
the kinked crack. The resulting integral cquations are solved numerically by the Chebyshev
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polynomials technique and applying the reciprocal theorem. The stress intensity factors
(SIFs) at the crack tips and the generalised stress intensity factor (GSIF) at the kink vertex
are obtained directly from the resulting dislocation densities. The method 1s checked against
available solutions for some special cases of anisotropy (orthotropic and isotropic
materials), which are analysed as particular cases of the general formulation.

ANALYSIS

The geometry of the kinked crack in an elastic material with general anisotropy is shown in
Fig. 1: the main crack lies on the x;-axis, the origin coincides with the vertex and the crack
tip with the point (~1,0); the branch of length ¢ forms an angle ¢ with the main crack. The
problem has been modelled as a continuous distribution of dislocations that is singular at
both crack tips (') and at the vertex (*"). Although the analysis of the vertex singularity
does not require the use of finite crack and branch lengths, this approach is convenient for
solving the problem of the kinked crack. Using this formulation combined with the Mellin
transform, Blanco et al. (2) have shown that the dominant stress singularity 4 at the vertex
is given by the root of greatest real part of the characteristic equation

det[M(s)]:det .~ D o oonsomns T o B -0 (N
%csc(m)ﬂv(l—s)g —%cot(m)

where /; are the direction cosines of the axes (x.y) with respect to (x1.x7) and H,(s) are
functions of the complex variable s which depend on the material constants and the angle ¢
(2). As expected, A is independent of the branch length taken to develop the formulation.
Moreover, as shown in (2), the rank of matrix M(J) is five for the general case O<p<n
and then the corresponding cigenvector V. =V, ¢ = 1.2,....6) is determined up to a
multiplicative constant, A, that represents a generalised stress intensity factor (GSIF) at the
notch tip. However in the limit case of a crack (¢= 7) the rank is 3 with A= 1/2.

The crack path, see Fig. 1. can be represented as

X,(r):{r -1<r<0 and Xz(r):{o -1<r<0 @)

rcos¢g O<rsc rsing O<r=c

The dislocation densities dyr) are assumed to have square-root singularities at the
ends of the interval [=1, ¢] and a weaker singularity at 7 = 0, and then

d,r) = { l+r)7”2(c - r)*”2 D (r)+ Av, (-t (Fl<r< 0) o

(1+r)4/:(c__r)—l/z D, (r)+Av“3I“'A (0<r<c)

where D(r) are unknown bounded functions in [-1, cl, and A4 is an unknown constant. The
stresses generated by these dislocation densities can be calculated by superposition of the
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solution for an isolated dislocation due to Stroh (3). Let Ti(r) denote the tractions induced on
the crack surface by the external load in the non-cracked medium. The condition that the
crack is traction free requires

1,00 = g 2 bt ) Lo @+ p - Xa0)

4 ; "
+— L M Q (r d 4a
4”2 Mo a(){v, B T s AT (42)
. -2
V43 _———’L—”dp}+C.C. (-l<r<c)
0 X, (r)+p X, (r) =~ pTa
dx dx,
Q,(r)= —dT‘(r) + Pa —d—r“—(r) (4b)
T, =COSP+ P, sing (4c)

where C.C. denotes the complex conjugate and the convention of summing over repeated

Latin indices is used; pa, Lia and M, are material dependent constants designated with the
same name in Stroh’s work (3). The condition that the crack is closed at both ends gives

[ e=p) D, (e A[v, [ cortdoev,sl) p“dp} =0 ®)

The numerical solution of the system of integral equations (4a) and (5) can be
obtained by expanding the unknown functions D{p) in the form

N
D, =Y D,T,(O) ©)

n=0

where T, are Chebyshev polynomials of the first kind, D;, are unknown coefficients and ¢ is
2 normalised co-ordinate over he interval [-1,1]. Substituting (6) into (4a) and (5) and using
the integration properties of the polynomials 7}, yield a system of 3N + 3 equations (Blanco
et al. (4)) and 3N + 4 unknowns: the constant 4 and the coefficients D;, (j = 0,1,....N). A
supplementary equation can be obtained using the reciprocal theorem for two dimensional
clastostatics in the absence of body forces

I(o‘kﬁk —G,u,)dl =0, with 0, =00, and G, =Tyn, %)
A

where #; is the outward pointing normal to the simple closed contour C containing no
singularities, and &kj and #, are two auxiliary fields of stress and displacement which

satisfy the same equilibrium and constitutive equations as the actual fields. The appropriate
auxiliary fields derived in (2) are originated by a dislocation density given by
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WLA, (- w<r< O)
in=1"" ®)
réi: (0 <r< w)

where W =w; (i = 1.2,...,6) isthe cigenvector of matrix M corresponding to the eigenvalue
s = 2-A. The stress and displacement fields created by these dislocation densities can be
calculated, as before, by superposition of the solution for an isolated dislocation. Now
consider a closed contour as the one shown in Fig. 1. If ', and [k arc chosen as circular
paths of radius & = 0 and R —> oo, respectively, it can be proved that the integral along I'x
vanishes and then the reciprocal theorem becomes

A6, =G = jakﬁk dl + jakm di )
L\ L,

where (', and C are constants dependent on the clastic properties and the kink angle ¢ (2).
Equation (9) provides the additional equation for the 3N + 4 unknowns.

The SIFs arc obtained directly from the dislocation densities. As the stresses are
singular near the crack tips, the asymptotic behaviour is governed by the values of the
functions Dy(r) at r = _1 and r = ¢ for the main crack and for the branch, respectively, or
alternatively, at ¢=—1and ¢= 1. in the normalised co-ordinates. Then

1 I+c¢ 1 l+c< - :
——,|7 D, (=)=——,|7T—— 1D, forthe main crack
2 D=7y 2 D P

n=0 (10)

L { l+c L [(1re<
i |22 p ()= |7—— D, for the branch
2 2 i 2 2 2P

n=0

Ky =

with 7(1) = 2, n(2) = 1 and n(3) =3. The generalised stress intensity factor (GSIF), 4, at
the kink is obtained directly in the resolution of the system of equations.

RESULTS

The analysis of the stress singularity at the notch tip has been checked against a number of
available solutions for particular cascs of anisotropy. First, the isotropic material can be
treated with the present formulation as a limit case of slight anisotropy. The comparison
with the known solutions (Atkinson ct al. (5); Sih and Ho (6)) results ip values of A with an
accuracy of four significant figures. Another check has been done for the particular case of
an orthotropic material. For a notch of monocrystalline silicon with an opening angle of
70.532° (¢ = 109.48°), Heinzelmann et al. (7) give as the maximum singular stress exponent
4= 0.4814, while the value obtained through our formulation is A = 0.4806. In all the cases,
the correct limit values of A =0 (for ¢=0)and 1=0.5 (for ¢ = 180°) have been obtained.
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As an example of the kinked crack problem, Figs. 2 and 3 show the effect of the
branch length and branch angle on the GSIF and the SIFs (for brevity, only K; is given) for
a crack lying in a monoclinic material (ethylene diamine tartrate). The clastic constants for
this material have been taken from Huntington (8). The SIFs are normalised with respect to
the SIF of the straight crack before branching takes place, K, = o\ mb/2 ., where @ is the
stress normal to the main crack and b is the length of the main crack. As expected, for small
values of ¢/b. K; at the main crack tip tends to K,. The GSIF is normalised by 0'\/; (note
that the units of the GSIF (MLW'T’Z) depend on the magnitude of the stress exponent A).
The GSIF changes sharply when the branch length is small and tends to stabilise towards
the stationary value corresponding to an infinite notch as the branch length increases.

CONCLUSIONS

A method has been developed to obtain the stress singularity at the tip of an angular notch n
materials with general anisotropy. This is used to formulate a model for a kinked crack
which incorporates the accurate analysis of the main singularity at the kink vertex. The
validity of the analysis has been checked against available solutions for isotropic and
orthotropic materials, which have been analysed as particular cases of the formulation.
Results have been presented that show the influence of the branch length and branch angle
on the SIFs and GSIF when the case of general anisotropy is considered.
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Figure 2. Generalised stress intensity factor

Figure 1. Kinked crack and contour for
as a function of branch length and angle.

application of the reciprocal theorem.
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Figure 3. Mode I s
(a) main crack tip; (b) branch tip.
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