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STUDY ON THE PROCESS OF INTRUSION FORMATION USING
CRYSTALLINE FEM ANALYSIS

N. Osawa*, Y. Tomita* and K. Hashimoto*

A crystalline FEM code developed by the authors to analyze cyclic
plastic deformation behavior during fatigue process is improved by
reexamining a strain hardening rule and a time integration
algorithm.  Using the expanded code, the deformation behavior of
f.c.c. single crystal under cyclic loading conditions is investigated.
The code has been shown to successfully simulate the localization of
plastic deformation and the generation of irreversible slip in the
course of loading history. The proposed strain hardening model
can be used for the analysis of intrusion formation.

INTRODUCTION

Intrusion can be considered to be the origin of fatigue cracks, and the accumulation of
irreversible slip within PSBs is one of the microscopic mechanisms of intrusion formation.
Therefore, in order to explain the process of crack formation, analytical simulation is one
of the prospective methods. Using this, we examined the microscopic mechanisms of
plastic strain localization and irreversible slip generation.

Crystalline FEM analysis is applicable to such investigation. Crystalline FEM
theory first was established by Peirce et al. (1). The authors (2) expanded this theory in
order to analyze cyclic plastic deformation behavior during fatigue process, and the code
has been shown to successfully simulate localization of plastic deformation and the
generation of irreversible slip in the course of loading history. However, it has also been
found that the code still needs further improvement.

In this paper, a strain hardening rule and time integration algorithm are reexamined
in order to improve the FEM code of reference (2). Using the expanded code, the non-

uniform deformation behavior of f.c.c. single crystal under cyclic loading conditions is
investigated.

* Department of Naval Architecture and Ocean Engineering, Osaka University, Japan

969



ECF 12 - FRACTURE FROM DEFECTS

BASIC EQUATIONS

The constitutive equation used in our analysis is based on the rate-dependent crystalline
plasticity theory developed by Peirce et al. (1). It gives the relation between the
Kirchhoff stress rate ¢, the shear strain rate on the slip system (a), y7'“ and the total
rates of stretching and spin, p and Q. From the constitutive equation, the rate of the
resolved shear stress (R.S.S.) of slip system (a), #“ isgivenby p and 7.

Peirce et al. used the power law form expression of the shear rate y'“ in reference
(1). This expression is not be applicable to the analysis of cyclic deformation behavior
because it does not describe the Bauschinger effects. It is a well-known experimental
result that dislocation density remains constant after cyclic hardening is saturated. This
leads to the following hypotheses; multiplication does not occur during dislocation
movements (a), and/or dislocations multiplied during slips disappear when the loading
cycle is reversed (b).

Hypothesis Part (a) forces us to introduce back stress of slip systems in order to
consider the Bauschinger effects. This is because strain hardening is mainly caused by
the long range stress field which accelerates the dislocation movement in the opposite
direction. This is the hardening rule employed in reference (2). On the other hand,
hypothesis Part (b) leads us to reset the flow stress to the initial value when the loading
cycle is reversed in order to analyze the Bauschinger effects.

In this paper, the strain hardening rule derived from the Part (b) is used. It is given

by
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Here, ¢ corresponds to the flow stress in the rate independent formulation, &'

represents the corresponding reference rate of shearing, and the exponent 1/m
characterizes the material rate sensitivity. The hardening moduli &, of Eq. (1) is given

by Eq. (2)
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Here, the parameter ¢ sets the level of latent hardening. Egs. (1) and (2) are the

hardening rule employed in this paper.

NUMERICA H

Boundary value problems in this theory can be solved using the finite element method.
In the same manner as references (1) and (2), analysis is based on the Lagrangian
formulation with the initial unstressed state taken as reference, and the convected
coordinate formulation reviewed in Needleman (3) is adopted.

In references (1) and (2), the rate constitutive equation is implemented by the one
step, explicit rate tangent modulus method. As the residual force is not generally
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dispelled at any loading step, numerical solutions lose the accuracy due to errors
accumulated at each loading step. A new calculation method is developed in this paper,
by which the residual force is dispelled at every step.  As in the tangent modulus method,
the slip increment on slip system during time increment Ar is calculated by a linear
interpolation of shear rates at time ¢ and r+Ar. D in the expression of ¢ can be
represented by the nodal displacement rate U’. Integrating the constitutive equation
with respect to time, the above relations lead to a set of equations for Kirchhoff stress
components 7/ and the nodal displacement U’ at  and r+Ar. Taking the first
‘guess’ of 71, and U’ as T/l,,=7"l and U’l,,=U"1|, a set of successive
iterations for 7’I,, and ©U’l., can be derived by using the Newton-Raphson
procedure.  Another set of successive iterations can also be derived from the principle of
virtual work at r+Ar. From these two sets, an explicit algorithm for the successive
corrections of U7 1,,,, can be derived.

RESULTS AND DISCUSSION

In this paper, cyclic plastic deformation behavior of a rectangular parallelepiped f.c.c.
crystal, shown in Figure 1, is analyzed. In Figure I, coordinates x,y,z are the
longitudinal, horizontal, and vertical edges of the crystal. ~The ratio of initial length,
X0.V0:Z0, 18 24:8:4. The finite element model employed here is composed of
24x8x4 8-node isoparametric solid elements. Because of initial imperfections, the
width and height of the crystal are reduced about 1% at x,/5 from the crystal’s ends.

The elasticity of the crystal is taken as isotropic, and characterized by Young’s
modulus and Poisson’s ratio, shown in Table 1. Material constants which characterize
the plastic shear deformation are also listed in Table 1. # and ¢ of Eq. (2) are set to be
constant, h=30.4MPa and g=14.

As shown in Figure 1, the rate of the end displacement is controlled during cyclic
loading while both ends remain shear free. End displacement is controlled so that the
nominal strain amplitude is 3100x10°¢ and the nominal strain rate is +107*(1/s). The
cyclic loading is fully-reversed tensile-compressive loading. We call the period from
the beginning of the loading to the first maximum tensile loading “the Oth cycle”, and the
period from the i th maximum tensile loading to the i+1 th maximum tensile loading
“the i tlf/_gxcle”. The number of loading cycles is 120, and the loading direction is set

1

to (4f1/6. /6,31/31.

Figure 2 shows the computed load vs displacement curve. Load is defined by
dividing the sum of the longitudinal components of reaction forces by the cross section
area of the perfect crystal in initial state. The curves of each loading cycle retrace
almost the same course throughout loading history. Thus, the stable stress-strain
hysteresis loop obtained by means of the developed strain hardening rule corresponds to
the appearance of cyclic plastic deformation of commonly used materials.

The symbols 11,72,--718 stand for the points located at the initial imperfections
shown in Figure 1. From the beginning of the loading to the 8th cycle, stress centers on
13,14,15 and 16, and the distribution of equivalent stress & is almost symmetric with
respect to the xz plane which passes through the center of the model. The degree of
stress concentration during tensile loading tends to be more intensive than that during
compressive loading. From the 9th to the 70th cycle, stress concentration at /1./5./4

and /8 increases while that at /3 and /6 decreases, and the symmetry of the
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distribution of & with respect to the xz plane is lost. ~After that, stress distribution
remains almost constant. Figure 3 shows the distribution of & at the maximum
compressive and tensile loading points of the 120th cycle.

The accumulated sum of slips T' defined by Eq. (3) is employed as the parameter
which indicates the amount of plastic deformation.

L D SN L —————————————— 3)

In the same manner as stress distribution, T' centers on /3,/4,/5 and I6 from the
beginning of the loading to the 8th cycle. From the 9th to the 70th cycle, a
concentration of plastic deformation lying between 11,514 and I8 gradually occurs.
After that, the localization of T' continues. Figure 4 shows the distribution of T at the
maximum tensile loading points of the 10th and the 120th cycle.

AT, at each measuring point is defined by the increment of ' during a half cycle
(the period from maximum tensile/compressive loading to maximum compressive/tensile
loading). The degree of irreversible slip generation and plastic deformation localization
can be judged by the time history of AT}, . AT}, remains constant when reversible slip
occurs, while it changes when irreversible slip occurs. AT, increases when plastic
deformation concentrates while Ar,,, decreases when it declines. Figure 5 shows the
time history of AT, at /1,723 and 4. In this figure, the ordinate represents the
increment of T during the tensile loading of the i th cycle when the abscissa equals
i—1/2, and during the compressive loading when the abscissa equals i. Figure 5 shows
that the localization of plastic deformation pauses after rapid localization, and then
resumes at the 20th cycle only to saturate after the 70th cycle. ~ After that, the value of
AL, at 11 and 74, the points where plastic deformation localizes, fluctuates
considerably. - At these points, the same slip systems work, but the amount of slip is
different for each direction. This means that cross slip does not occur, but irreversible
slip caused by ‘random-walk’ slip is generated in this region.

For the above results obtained by employing hypothesis Part (b) model, the initial
imperfections cause nonuniform residual plastic deformation. ~ This makes the
heterogeneity of stress distribution increase and the difference of slip deformation during
tensile/compressive loading become greater.  This, in turn, leads to the localization of
I and the generation of irreversible slip, which causes intrusion formation. The same
phenomenon is found in the results obtained by employing Part (a) model in reference (2).
In this respect, both Part (a) and Part (b) strain hardening models can be used for the
analysis of intrusion formation. However, there are some differences between the two
models. Localization of T derived from using Part (a) begins much earlier than that
from Part (b), and cross slip occurs often with Part (a) while it does not occur at all with
Part (b). The reason for such differences is as follows. With hypothesis Part (a), the
difference of slip deformation during tensile and compressive loading makes the
deviation of back stress increase, and the maximum drive force (R.S.S.—back stress ) during
tensile/compressive loading decreases while it increases during compressive/tensile
loading. This forces the onset of localization and irreversible slip to quicken. When
the deviation of back stress continues to increase, the maximum drive force in
tensile/compressive direction decreases with time until finally it does not exceed the flow
stress.  When this happens, there appear some slip systems which work during only
compressive/tensile loading, that is, cross slip occurs.  On the other hand, the difference
of the drive forces caused by the deviation of back stress does not occur with Part (b), the
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onset of localization and irreversible slip is delayed and no cross slip occurs. It is not
yet clear which model is suitable to analyze intrusion formation.

SYMBOLS USED
p,Q total rates of stretching and spin

AT increment of the accumulated sum of slips during a half step

g flow stress of the slip system (a)
gtel shear strain of the slip system (a)
r accumulated sum of slips

hy. g latent hardening module, parameter which sets the level of latent hardening

7, TV Kirchhoff stress tensor and its components
74 resolved shear stress of the slip system (a)
v’ nodal displacement
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TABLE |- Material Properties used for
calculation

Young’s modulus 58800(MPa)

Poisson’s Ratio 0.3
a@ of Eq. (1) 0.002
m of Eq. (1) 0.005
g1, of Eq. (1) 58.8(MPa)

Figure 1 Finite element model for f.c.c.
single crystal
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Figure 2 Normalized load vs displace-
ment curve
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(b) At the maximum tensile loading
point of the 120th cycle

Figure 4 Distribution of accumulated
sum of slips T
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(b) At the maximum tensile loading
point of the 120th cycle
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Figure 5 Time history of the increment
of I during a half step ar,,,
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