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FLAW ASSESSMENT IN STRUCTURES
OF STRAIN HARDENING MATERIAL

S. Kovchyk® and R. Risnytchuk’

Energy release rate of central cracked plate of non-linear
elastic material under tension is presented by two terms,
describing a crack caused change of energy along edge and
central axis of a plate. The first term is a drop of energy along
central normal to crack axis of plate caused by crack. The
second term is an increased of energy, due to crack, along
edge of plate. Relation between these components depending
on crack size rate and strain hardening exponent is found.
J-estimation scheme for elasto-plastic crack in term of these
components was found to be more convenient. An analytical
estimation of J-integral for any value of strain hardening
exponent, which being in good agreement with finite element
results, is carried out.

INTRODUCTION

A fracture avoidance criterion of structure containing flaw can be presented as a
condition of avoidance of crack growth initiation (Ainsworth(1)) in the form

J<J¢ _where Jis a parameter offered by Cherepanov (2) and Rice (3), which is

mart >

the basic measure of the stress-strain state in a vicinity of a crack tip under
monotonous loading, J;,, is constraint dependent critical value J at crack growth
initiation. For J determination the model of a non-linear elastic body is convenient,
as then J is energy release rate with crack growth .The uniaxial tensile stress-strain
relationship of such materials is &/&,= a(o!o,)", where &, o, and n are yield
strain, yield stress and strain hardening exponent, respectively, and « is a material
constant. Then for elastic-plastic bodies J-estimation is based on interpolation
between linear and nonlinear meanings (Ainsworth (1), Kumar et al (4), Bloom (5)
and Turner (6)). The aim of this paper is to develop J-integral estimation and
methods of interpolation between linear and nonlinear cases for simple central
cracked plate geometry.
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DECOMPOSITION OF ENERGY RELEASE RATE ON COMPONENTS

We consider a centre-cracked plate under tension with sufficiently large
height 2H, so that the disturb field of stress and strain about a crack does not
reach ends (Fig.1). In a linear case it is possible by virtue of Saint-Venant
principle, according to which height of a disturb zone is proportional to the
width of plate Zc. However, in a case, when the parameter of strain hardening
exponent tends to infinity, this principle is invalid. On the basis of (7) it is

possible to assume, that at n< n+<oo with sufficiently large height (H>\/;c)

the disturb field will fade on height in a plate not reaching the ends. Stress and
strain in a plate with a crack may be presented in the form:

N (V)] >
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where o-ll(o), g,,(o) are components in plate without crack (o-J‘,g’ =0,,
O'A,(CB) :O'g/)) =0, gg) =g, =A/H, S,({B) = gg)) =0, &9 :71/5)(,2), v=05); Ao, ,

Ag, are components of disturbans.

Qualitative character of distribution of stress and strain in plate can be
presented in form of several zones (Fig.1). Around of the crack there is a zone
of unloading {1} covering its surface. Here the components of the disturb field
compensate the components of the undisturb field (Ao, ~-0,, Ag, ~—¢,).

In addition, the high loaded zone {3} appears. It includes a zone of high stress
and strain concentration in the vicinity of crack tip {2}, and reaches the edge
of the plate. In this zone the disturb strain can considerably exceed uniform
strain (Ag,; >>¢,).

By choosing a contour of integration on edge of a body and on central
line of symmetry (Fig.1), J-integral may be presented as:

J =AW, +AW,, )
where AW, = Lf(w— wg)dy; AW, = g{(wg - w) + 0 }dy.
1 D

Some components here are neglected, as by virtue of symmetry of a field and
equality of stress to zero at free edge of a body, and also the uniformity of the
undisturb field, they are equal to zero. Here also to these components gross
energy density wg with opposite signs is added, that does not change expression
for J. However now the integrands are not equal to zero, only while the
contours of integration lay in a zone of disturbans of stress and strain. It is
obvious, that the value of J is determined by the sizes of zones of disturbans
and deviation of strain energy density in these zones from the gross value.
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With monotonous increase of loading the plastic strains, which at first covered
zone 2, spread in zone 3. If a crack is rather small, the plastic deformations
can occur in the whole body except of zone 1, the size of which grows. It is
obvious, that the nonlinear analytical expression for J and interpolation
between linear and nonlinear cases should be considered separately for these
components Wpjand Wi

RELATION BETWEEN Wii AND Wi2 COMPONENTS

Let us consider a plate at fixed boundary displacement on the ends
(g=2A=const). Thus, J for nonlinear elastic body can be determine as a change
of elastic energy in a body with change of crack length

1
2t ’

A=const

J = 3)

Here 7 - is a thickness of a plate, which here after is put to 1. Instead of a
change of crack length we can consider cutting off from the plate edges some
strips of small thickness 8b and inserting strip by thickness 28a into centre of
a plate. The change of energy with such transformations can be presented as
(Rice and Druker(7)):

AW = dev + IAds , 4)

Av AS

where the integral over volume equals to the energy in a strip, which is
separated or joined; A is a work of forces, on components of displacement on
a surface of cutting off or joining on plate with transition from one condition
to another. At a free surface, when thickness of cut-off strips tends to zero, the
work tends to zero, as efforts on a free surface equal to zero. It is possible to
show that the contribution of this work on center axis of the plate gives an
additional component o &, in the equation (2). Then it is possible to
consider a variation of energy of a plate with the fixed displacement on the
ends in the form:

oW = 2(2Hw, - AW, o + 2A2mw, + oW, Job. (5)

When &b = —sa we have a crack growth, with fixed width 2¢, and we obtain
the equation (2).

Let us consider the similar scheme for a plate, for which gross stress
o, is fixed. Thus the load varies as 6 P =20, .&¢ . On the base of Figure 2, it

is possible to get relation :

(n+1)34=—Pdq +nqoP (6)
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where 04 = oW/ I secony 18 variation of energy with the fixed displacement at the

ends, &g is a change of displacement at ends. On the basis of equations (5)
and (6) it is possible to obtain a relation, which connects the components
AW,, and AW,, with a component of displacement caused by crack g. = 24,

(Risnytchuk(9)):

— AW, 5+AW,,9="—_lag » 7)
e ‘¢ n+l

In a linear case (n=1) equations (2) and (7) lead to:

AW, :%J

e

b
AWy, == (®)

Here J, is related to the stress intensity factor K J,=K!/E'. The nonlinear
case essentially differs from linear, as the exact relation between components is
lost and depends on a parameter of strain hardening exponent n and load
level. For the whole n range (1< n <) equations (2) and (7) lead to:

c n-1 c
J =—AW, +——0o.q,.—.
1=y T %y

)

SOME APPROXIMATIONS FOR J

Besides equation (9) the values of g, and J can be connected by equation:
1 a,

J=—=P—

20(n+1)"

. (10)

P=const

On the basis of egs. (9) and (10) it is easy to obtain (Risnytchuk(9)):

A= agog(.f,n)[l)i] b, (11
0

n+l

P\ -1 P
J = a‘guo'o*/;%f(éan)[[,}:] ¢+ ago, —Z—+—1g(§’n)(Foj b, (12)

&
g&m =n(n+1)[A0-2)"2 f(Am)dA, E=alc. (13)

0

Here f(&,n) is some slightly variable unknown function, which, from the

condition of reducing to the known linear case f(&,1)with n —1, we choose
as:
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f(&n)= f{TrE% 1] , fED= ;z(l —05&+ 0.32652)

2

(14)

The comparison of equation (12) with finite element solution (Kumar
et al.(4)) is shown in Fig. 3 in terms of parameters (Miller and Ainsworth(10)):

1

_ h(é:’n) el _ n—1 1—_1_
Fp—[ h(g’l)} | hEm =ng(1- &) FEm+ g

As it can be seen from Fig.3, we have a good agreement with the finite
element solution.
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Figure 1 Central cracked plate under Figure 2 Load—displacement curves
tension for two similar samples
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Figure 3 Dependence of Fj, on strain hardening exponent n calculated by
finite elements method (dashed lines) and by equation (12) (solid lines)



