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ANISOTROPIC DUCTILE RUPTURE

AL AL Benzerga®, J. Besson®, R. Batissef. A. Pinean*

The aim of this article is to study the effect of inclusion
shape on ductile fracture anisotropy of a C Mn steel containing MnS
inclusions. For this purpose, a Gurson like model incorporating void
shape effect has been implemented in a finite element software. The
model is tested for varying stress triaxialities and initial void aspect
ratios. It is then applied to discuss the differences in strains to
failure measured on axisymmnetric notched bars tested along different
directions. In order to determine the appropriate initial parameters,
namely the void shape and the volume fraction. inclusion morphology
and distribution are characterized using quantitative metallography.

INTRODUCTION

A wide range of engincering materials often exhibits both anisotropic plastic behaviour
and anisotropic failure properties. Plain carbon stecls may contain large inclusions
preferentially elongated in the rolling direction. Inclusion shape is commonly expected
to be at the origin of anisotropic ductility (Mudry [8]. Lautridou and Pineau 7).
Recently, Gologanu et al. [4, 6] have developed a micromechanistically based model
including void shape effect (GLD -model). Anisotropic plastic behaviour coupled with
damage has also been analysed in a previous work Benzerga et al. [2].

The aim of this article is to model ductile fracture anisotropy using local approach
concepts.  The analysis is based on the improved version of the GLD model [6]
implemented in the finite element code ZéBuLoN7 [3]. The model emphasizes the
role of anisotropic void growth on ductile rupture. Description of final failure is done
using a localization-based coalescence criterion (Perrin [9]). The model is applied to a
hot-rolled ferritic pearlitic steel containing elongated Mn$S inclusions.

EXPERIMENTS

Material characterisation

The investigated material is a ferritic pearlitic steel of grade X52 cut from a rolled sheet
(C=10.17,S = 0.009, Mn = 1.23.Nb — 0.0038wt%). Tensile and compression tests were
carried out on smooth specimens to identify the orthotropic behaviour of the material
(Tab.1). A detailed analysis of inclusion distribution was performed on polished sections
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Table 1: Yield stress (0,), ultimate tensile strength (Ryn), reduction of area (Z%),
anisotropy factor (R.) and strains to failure (g7) in notched bars AER for several
notch radii. XY-axis : at 45° to X -axis in X-Y plane.

Tensile | oy R V/ R. ef (AER) (%)
axis | (MPa) | (MPa) | (%) 10 4
L 405 532 | 120 | es/er = 1.5 | 88.5 | 67.5 | 52.8

T 370 540 96 | eg/er = 1.4 | 55.7 | 36.9 | 26.0
LT 420 525 | 128 | es/err = 1.1 | 89.0 | 58.5 | 45.5

perpendicular to the orientations L, T and S. Only MnS, oxides or carbides greater
than 2pm were considered. The mean dimensions <dp> of the inclusions in each section
and their area fraction f, were measured (Tab.2). Using stereological relationships.
one can derive 3D average dimensions D; of all inclusions [7]. In this study however,
since we are mainly interested with MnS, we make use of the relationship Dr=vDiDs
(Batisse et al. [1]). Average dimensions D; of MnS are reported in Tab.2. The volume
fraction inferred from these calculations, equal to 0.09%, is comparable to fq and to
the value deduced from the chemical composition (Franklin formula): 0.045%.

Testing of notched bars

Tests on axisymmetric notched bars cut in L, T and LT orientations were carried out in
order to study ductility anisotropy within a representative range of stress states. The
specimen geometries noted AER are homothetic of standard ones (see e.g. [10]). Bach
test was interrupted several times to measure reduction of both principal diameters @,
and @, and thus to estimate the average strain £ = In(®%/(®1P2)) where &g = 3.9mm
is the initial diameter. For any direction, the ductility decreases with increasing stress
triaxiality (i.e. decreasing notch radius, see Tab.1). Note that the decrease in ductility
in off-axis tension, LT, occurs more rapidly. It is worth noting the difference in the
values of strains to failure between L and T directions.

MODELLING

Void Growth

The proposed model is developed in [4]-[6]. It consists in extending the Gurson criterion
to the case of axisymmetric ellipsoidal cavities characterized by the shape parameter
S = In(a/b) (see Fig. 1). The latest version of the model [6] allows for a more realistic

Table 2: Quantitative metallography: mean dimensions and fraction of inclusions. (*)
vefers to MuS only. (L) (resp. (T), (S)) is the section of normal L (resp. T, 5).

A, (pm?/mm? ) | fa <dp>(pm) | <dp>(pm) | <ds>(um) | Dp Dr Ds
D] M 1O || MG [ [(L)] (T) | (um) | (m) | (um)

364 | 1069 | 425 | .06 || 14.6 | 44 |38 | 3.2 | 3.1 | 2.6 - -
502 | 1.2 | ~ 2.9 - 2. 44.3 | 10.7 | 2.6
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description of the evolution of void shape [11], with regards to unit cell calculations
[13]. The model is formulated in terms of a yield criterion:

. o 4 S X2 kY .
®(E.5,8) - IEEEXI o oD+ cosh (%) - 0+ o+ 5%
* *
With Zh = az(Em; + Eyy) + (1 — 202)222 (2)
a4 is the matrix flow stress, £ the deviatoric part of I, |||| the von Mises norm, ¥, a

weighted average of the stresses, z-direction the common axis of the voids, X a constant
tensor, and C, n, g, & and az are coefficients that depend only on the porosity f and S
while o, @ and g, depend on S only. The evolution law of f is derived using mass
conservation. The shape parameter evolution is governed by:

3 3

G
: 201 — Q) / 1 —3a; )
=-{l+zhr e —_— + +3ay—1) D,
5 1 2h (M N4)) 1 3a, :’DZZ 3( 7 3ay m 3)

where Dy, and D), are the mean part of D and the D’-component parallel to voids. See
6] for full expressions of S-functions and hy(T), where T is the stress triaxiality. It is
worth emphasizing that void growth is governed by ¥, (which becomes the mean lateral
stress in the cylindrical case, ay = 1/2). Recently, a Gurson-like model incorporating
plastic anisotropy effects has been proposed in the case of spherical voids [2]. No
micromechanically-based model is still available accounting for both plastic anisotropy
and void shape. Here, for simplicity’s sake, we just replaced Mises equivalent stress by
Hill equivalent stress in Eq.(1).

Coalescence

Final rupture is governed by void coalescence. In this work, coalescence is assumed to
correspond to the development of highly porous layers in the material. The onset of
coalescence occurs when the condition of strain localization is satisfied in a horizontal
plane within the porous region [9]. Such a localization implies a vanishing hardening
rate of the porous material (Rice [12]). Of course an accurate analysis of the coalescence
mechanisms should incorporate void shape effects (Thomason [14], Gologanu et al. [5]).
But the basic idea for coalescence modelling remains the inhomogeneous distribution
of voids induced by the deformation.

RESULTS AND DISCUSSION

Void shape effect

The main drawback of the earliest model [4] is that the effect of S on the porosity
rate was uncorrect [13]. If one explicitely calculates f from the criterion using the
incompressibility condition and the normality flow rule then we obtain after some
manipulations for axisymmetric stress states and |S| > 1:

Oy, P

. 2 1
/ = “"‘"di = Deg®  where = =, (prolate); —g, (oblate) ; 0, sphere (4)
1- f 1— % 3 3
Yeg
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It is the presence of ¥, in the squared term of ¢ in Eq. (1). that leads to a correct
influence of the shape of the void upon its growth rate as shown by Eq. (1). For high
triaxialities and f — 0, one can also derive a cavity growth rate similar to that of Rice
and Tracey but including the effect of shape change:

3 1
f 5{111"“"

Z:h
? - ((1 — B (nTh + 1) = Baukf sinh (kTy)

qu

) exp (kTh) ng(p) where Ty, — (5)
Of course the shape parameter itself varies in the general case according to Eq. (3).
Fig.-1 shows the evolution of S for different stress states, initial shapes and loading
directions. These results are obtained through FE integration of the constitutive
equations with stress state control using Riks algorithm. The fact that voids tend
to become spherical at high triaxialities has received wide acceptance. This is obvious
from Fig.-1 for initially prolate or oblate cavities. However, an initially spherical cavity
tends to become oblate at high triaxiality (7> 2 in Fig.-1). This is a typically plastic
effect in qualitative agreement with the results of Budiansky et al. [15]. More generally,
for a given Sy there is an intermediate stress state 7; that let the void shape invariant
during deformation (for instance, 7;(So = 2.5) = 1 while for spheres Ti(Sy = 0) = 1.5).
Simulations done for loading perpendicularly to the void axis (dotted lines in Fig.- 1)
generalize those presented in [5]. It is clear that S evolution is less sensitive to T
than in the condition of loading parallel to voids. But at a given triaxiality T, the
evolution of shape parameter depends sufficiently on the loading direction to allow for
strongly different effects on cavity growth according to Eq.(4). This will be of a great
importance in the following when anisotropic rupture is considered. Finally, off-axis
tension using the present model gives as expected poor results, since the model is valid
only for parallel voids that do not rotate relative to the material.

Simulation of notched tensile bars

Fully-3D simulation of AER accounting for plastic anisotropy is done using ZéBuLoN
code [3]. Quadratic quadrilaterals subintegrated elements with updated Lagrangian
formulation are used. Calculations are mesh-insensitive as far as fracture initiation is
considered. The element size is 0.5x0.5x0.25 mm?® at the minimal section of notched
specimens. Yielding obeys Hill’s criterion while the isotropic hardening law is fitted
for L-direction [2]. Finally, use is made of the localization model to assess the critical
porosities at coalescence. The set of equations established in the case of a Gurson—
like metal [9] has been solved using MAPLE code for a wide range of triaxialities and
fo. Results obtained with the prolate model are shown in Fig.-2 with the initial mean
values: fo = .09% and Sy = Dy /v/DrDg = 1.5. Sy is lower than the value obtained for
MnS only. The model correctly accounts for anisotropy effect since ductility is higher
in L direction whatever the triaxiality. No attempt has been made to quantitatively
improve these results by varying fo. It is nevertheless likely that discrepancies between
experimental and numerical results are due to the void shape effect on the coalescence
process. The porosity is always maximum at the center of the minimal section whereas S
distribution depends on Sy and specimen geometry. For instance, for A£ R4 specimens
(Fig.-3 and -4), S tends to decrease at the center, more rapidly in tension along T
direction (Fig.-4) in agreement with experimental observations.
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CONCLUSION AND FUTURE WORK

(1) The proposed model is formulated in terms of a macroscopic yield function
depending on two appropriate variables physically meaningful and measurable.

(2) At high 7. voids do not necessarily tend to become spherical. That is why a
simplified cavity growth law (Eq.(5)) is proposed to account for likely S-effect.

(3) A material with prolate cavities parallel to loading direction exhibits much higher
ductility than a material containing spherical voids.

(4)  Modelling anisotropic ductile rupture needs the use of at least two variables (f
and S). It is thus possible to study separately the effects of S on cavity growth and
void coalescence.

(5) Finally the three following topics have to be pursued: the need for a second
shape parameter to model the short-transverse rupture: the treatment of the problem
encountered in off-axis tension by incorporating cavity rotation: implications of the
model with strain localization should be investigated further.
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Figure 1: Definition and evolution of S for ~Figure 2: f-& curves. Experimental values
different 7", Sp and loading directions. ¢ are given at values of f at coalescence.
75 G

R o

Figure 3: Iso S in a notched bar AERAL  Figure 4: Iso-S in AERAT at incipient
(radius 4, tension along L) at coalescence. coalescence. Minimal and cross sections.



