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FRACTURE TOUGHNESS EVALUATION USING CIRCUMFERENTIALLY

CRACKED CYLINDRICAL SPECIMENS

C.H.L.J. ten Horn and A. Bakker’

In this study it was investigated whether a circumferentially cracked
cylindrical specimen could be used for the determination of Ji.. The
ASTM E813 standard requires that relatively large specimens are used
in order to provide sufficient constraint at the crack tip. Because a
circumferentially cracked cylindrical specimen is smaller than the
standard specimens, less material is needed for the test. The constraint
at the crack tip is provided because the crack front does not reach the
free surface of the specimen, as it does in the standard specimens. After
precracking the fatigue ligament showed large amounts of eccentricity.
Two types of eccentricity correction are used in this study. The first is
applied to the crack extension, the second takes into account the
bending stress caused by the eccentricity. Using both corrections, the
spread between the specimens was reduced and the data points were
close to those obtained with standard specimens.

INTRODUCTION

The aim of this study was to investigate whether a circumferentially cracked cylindrical
specimen could be used for the determination of J..

The ASTM E813 standard requires that relatively large specimens are used for the
determination of J, and states minimum dimensions for the ligament and the thickness of
the specimen. These requirements should ensure that sufficient constraint at the crack tip
is provided. As the amount of material needed for the manufacture of the specimens
according to the standard may not always be available, a smaller type of specimen is
desired. As a circumferentially notched cylindrical specimen is smaller than the standard
specimens, less material is needed for the test. Another advantage of this type of
specimen is that manufacturing is quick and easy.

Although the specimen is small, sufficient constraint at the crack tip is provided
because the crack front does not reach the free surface of the specimen, as it does in the
standard specimens.

* Section Mechanical Behaviour of Materials, Faculty of Applied Sciences, Delft University of
Technology

649



ECF 12 - FRACTURE FROM DEFECTS

EXPERIMENTAL PROCEDURE

The type of specimen used is a circumferentially notched cylindrical bar specimen and is
displayed in figure 1. The material used was Fe 510 Nb. This stecl was first hot-rolled to
a thickness of 30 mm and subsequently normalised. This material complies with Fe E355
KT according to Euronorm 113-72. The mechanical properties of the material given by
ten Horn (1) are:

Young’s modulus: 211 GPa,

yield strength: 365MPa,

ultimate tensile strength: 540 MPa,

strain at maximum load: 0.175.

For this type of specimen the equation for J is given by Rice et al. (2) in equation (1).
1 B
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where r is the radius of the fatigue ligament, P is the applied force, 8, is the load-line
displacement due to the presence of the crack. Although 8, cannot be measured directly, it
can be calculated from the measured displacement, 3, using the following equation:
3 = -9, 2)
c m sp

where &, is the displacement caused by the specimen and is estimated with equation (3).

= 2—P(i - i} tan(30°) +
R
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where the right hand side contains the load-line displacements due to the conical and
cylindrical part of the specimen over the gauge length, E is Young's modulus, r, is the
radius of specimen at the root of the notch, R is the radius of the specimen's gross section,

L, is the gauge length.

A four-point rotating bending machine was used to precrack the specimens under
constant load. As a consequence AK increases with crack growth and any eccentricity in
the crack will become more pronounced as the crack grows. If the specimen is loaded
using a constant displacement however, the AK drops as the crack grows. This means that
any eccentricity in the crack would disappear as the crack grows. However constant
displacement conditions could not be realised on our rotating-bending machine.

For the specimen types specified in the standard, the fatigue crack reaches the free
surface of the specimen. In order to ensure that the specimen can provide enough
constraint, requirements are stated in the standard for the thickness and the ligament of
the specimen. The fatigue crack in the specimen used in this study does not reach the free
surface of the specimen. As a consequence this type of specimen should be able to
provide the required constraint. The study done by Giovanola et al. (3) showed that deep
cracks provide more constraint than shallow cracks. For this reason deep fatigue cracks
were chosen for this study. The deep cracks however do not comply with the standard as
the ligament is too small. In order to investigate the possible precrack length dependence
of the J,., two different crack lengths were used, i.e. 1.5 mm and 1.0 mm. The definition
of the crack length, a, is shown in figure 1.
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After tensile loading, the specimens were heat tinted to mark the crack extension and
subsequently broken at liquid nitrogen temperature. The crack surface was mapped using
a microscope equipped with micrometer displacement gauges. With the measurement
across the centre of the specimen, three corresponding points were measured: the edge of
the machined notch, the fatigue crack tip and the tip of stable crack growth. In order to
determine the eccentricity, €, of the fatigue crack of a specimen the centre of gravity of
the fatigue ligament was determined relative to the centre of the specimen. The centre of
the specimen was assumed to be halfway between the left and right tip of the machined
notch. The radius of the fatigue ligament was calculated relative to the centre of gravity.
The difference in distance between the last two points and the centre of gravity provides
the crack extension, Aa. These constructions can be seen in figure 2.

In order to correct for eccentricities, two eccentricity corrections were used:
A) correction for the crack extension
B) correction for bending forces

The eccentricity correction A comprises the use of the maximum instead of the
average crack extension. Due to the eccentricity the applied loads shall mainly act on the
part of the specimen where the fatigue precrack is the deepest. Therefore at this point the
largest crack extension is expected. As a result the maximum crack extension should be
used instead of the average crack extension when eccentricity occurs.

The eccentricity correction B corrects for the bending forces which occur due to the
eccentricity. This correction is implemented by modifying the equation for the applied
load as indicated in equation (4), where P, is the measured force. A similar eccentricity
correction for K. was found by Ibrahim and Stark (4).

P=P, +2P, = @)
R

RESULTS

For most specimens the fatigue precrack was not concentric. Table 1 shows the
eccentricity and radius of the fatigue ligament for the specimens.

Variations in diameter of the machined notch are found to affect the eccentricity. In
figure 3a the effect of the standard deviation of the diameter of the machined notch on the
eccentricity is shown. The presence of variations in the diameter, of the machined notch
will cause differences in AK and consequently lead to differences in crack growth rate
during precracking.

Also an influence can be seen of the direction of the minimum diameter on the
position of the centre of gravity of the fatigue ligament relative to the centre of the
specimen. These two directions are approximately the same, as can be seen in figure 3b.
Due to the measurement method only the diameter of the specimen could be measured
and not the radius. Therefore the direction of minimum diameter, and direction of
eccentricity were taken between 0 and 180°.
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TABLE 1 - The Eccentricity and Average Radius of the Fatigue Ligament of the

Specimens.
Specimen Ty € Specimen I, €
number (mm) (mm) | number (mm) (mm)
2 2.08 1.04 14 2.69 0.77
3 2.11 0.68 15 2.62 0.83
4 2.13 0.63 16 2.65 0.66
5 2.10 0.32 17 2.62 0.94
6 2.13 0.28 18 2.63 0.63
8 2.09 1.11 19 2.63 0.65
9 2.30 0.33
10 2.05 1:52
12 2.09 0.66

The crack extension and J values for the specimens are shown in figure 4a. The effect
of the use of both corrections can be seen in figure 4b.

On the same steel J tests were performed by Bholanath (5) using single edge notched
bend (SENB) specimens. The results are shown in figure 4b. The specimen with the
dimensions 270 x 60 x 28 mm complied with the ASTM standard. It can be seen from
this figure that the points found with the cylindrical specimens are close to the points
found with the SENB specimens.

In order to determine Jy, the standard specifies that a power law is fitted through the
J-Aa data. The intersection between the power law and the 0.2 mm offset blunting line
provides J;.. The standard gives equation (5) for the blunting line, while equation (6) is a
more realistic the blunting line for this material given by Bholanath (5).

J=20,Aa (5)

J=3206,Aa (6)
where o, is the effective yield strength, i.e. the average of the yield strength and the
ultimate tensile strength; Aa is the crack extension. In figure 4 equation (6) is used for the
blunting line.

The J;. values were calculated using equation (6) for the blunting line and are shown
in table 2. The table also shows the accuracy of fit, R and the values as obtained for
SENB specimens. It can be seen that by applying the both corrections the data points are

TABLE 2 - Calculated J,. values with Accuracy of Fit, R®. Also J,, values from SENB
Specimens, reference (5).

T R’
(N/mm)
No correction 421 0.29
Correction A 298 0.34
Correction B 812 0.59
Correction A and B 412 0.81

SENB 270 x 60 x 28 (mm) 488
140 x 30 x 15 (mm) 404
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better described by a power law than without the corrections.

DISCUSSION AND CONCLUSIONS

The fatigue precracking caused large eccentricities in the fatigue ligament. It is unlikely
that the eccentricity is due to the rotating bending machine as the specimens were placed
randomly orientated in the machine.

The variation in the diameter of the specimen correlates well to the eccentricities
found in the specimens. This seems a plausible explanation. Any eccentricity in the
machined notch could become larger as the crack grows. The fact that the direction of the
eccentricity is approximately the same as the direction of the smallest diameter, is an
indication that this is the most likely cause for the eccentricities. The specimens were
therefore not made accurately enough for this purpose.

The two procedures for eccentricity correction seem to work reasonably well. It can
be seen that the spread between the specimens is reduced. And the data points using both
corrections are close to the data points obtained with SENB specimens.

The J,, value obtained with the cylindrical specimens is lower than the value obtained
with SENB specimens that comply with the standard. This may be due to the fact that the
range of the data points was small.

On the whole it is found that cylindrical specimens can be used for determination of
J,. provided eccentricity corrections are applied.
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Figure 3. Influence of the variation of the Figure 4. J-Aa plots without and with both
diameter on the eccentricity eccentricity corrections
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