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WEIGHT FUNCTION METHOD FOR DETERMINATION OF CRITICAL
PLANE POSITION UNDER MULTIAXIAL LOADING

R. Brighenti*, A. Carpinteri*, E. Machat and A. Spagnoli*

The expected fracture plane can be determined according
to the critical plane approach and the fatigue life of a
body under multiaxial loading can be calculated. A
critical plane method recently proposed by the authors
consists in averaging the instantaneous values of the three
Euler angles, which describe the principal stress
directions, through some suitable weight functions to take
into account the main factors influencing fatigue fracture
behaviour. Such a method is applied to a number of
experimental biaxial proportional and non-proportional
sinusoidal stress states.

INTRODUCTION

Several criteria exist to predict the fatigue life of a body under multiaxial
stress conditions. One group of fatigue criteria is based on the critical
plane approach (You and Lee (1), Papadopoulos et al (2)), according to
which the critical or expected fracture plane is determined and the
fatigue life can be calculated. As is shown by many test results obtained
under multiaxial cyclic loading, the fatigue fracture plane position
chiefly depends on the directions of the maximum principal stress or
strain and the maximum shear stress or strain (Macha (3-4)). However, in
many cases we observe changes of the principal axes positions and this
fact cannot be neglected.

Factors influencing the position of the critical plane can be accounted
for through an averaging procedure. The weight function method consists
in averaging the instantaneous values of the parameters which determine
the position of the principal stress or strain axes, by employing some
suitable weight functions (Macha (4)) which are assumed to take into
account the main factors influencing fatigue fracture behaviour.

In this work, the weight function method presented in Carpinteri et
al (5) for predicting the expected fatigue fracture plane position under
multiaxial random loading is assessed through experimental data obtained
under biaxial proportional and non-proportional sinusoidal stress states.
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EXPECTED CRITICAL PLANE POSITION

The matrix A of the principal direction cosines [,,my,,n,, n=12,3 (the
principal stresses are arranged so as Oj 203 203) consists of nine
elements, but only three of them are independent because of six
orthonormality conditions. Alternatively, the orthogonal coordinate
system P123 of the principal directions can be described through the
Euler angles ¢,0,y (Fig. 1). This allows us to avoid the controversial

problem of selecting 3 independent parameters (from the matrix A) to be
used in the ensuing averaging procedure (Ref. (5)).

The calculation of the Euler angles at time instant t; from the
matrix A(fy ) consists of two stages. In the first stage (1st reduction), the
Euler angle ranges 0<o(ty hw(ty )<2m and 0<0(1, )<m (Korn and Korn
(6)) are reduced to the new range —71:/2S¢(tk),6(tk),w(tk)Sn:/2 by
multiplying particular columns of the matrix A(f;) by £ L.

In the second stage (2nd reduction), the signs of the above results
are changed in order to average the values of the Euler angles in a correct
way with respect to their physical meaning. Consider the vector (C—=P)
which describes the position of the X-axis (Fig. 2). Such a vector moves
because of the three sequentially combined rotations (1 ),0(tx hw(ty ),
and reaches the final position representative of the 1-axis. Since the
Euler angles range from —-7m/2 to n/2 after the 1st reduction, eight
possible final positions can be determined according to the different
combinations of their signs (Fig. 2). Four sign combinations represent the
possible positions Ei, E,, E; and E4 of the 1-axis on an external cone,
while the other four combinations represent the positions I, I, Is and 14
on an internal cone. Thus, the first four combinations describe a unique
solid angle between the X-axis and the l-axis, while the second four
combinations determine another value of such a solid angle. For this
reason, the signs of (1 ) 0(1 )w(t,) deduced through the 1st reduction
are changed to correctly average the Euler angles. For example, we can
assume the sign combination (+,+,+) for the cases E,, E,, E; and E4
relative to the external cone, and the combination (+,+,-) for the L, L Iz
and 1, relative to the internal cone. In this way (2nd reduction) the
ranges of the Euler angles are reduced as follows: 0<d(1y ).O0(ty )Sm/2

and —mw/2<y(t )Sn/2.

Since the expected fatigue fracture plane position is here assumed

to depend on the mean directions of the principal stress axes i, 2 and 3,
the weighted averaging of the Euler angles is carried out by employing
the following weight function, W(1; ¥a
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0 if o1(tx)<cOy4f
Wit )= O<c<l1 @))
Oyt )/ cOqf )]’"0 if o1(tg)2coy

that includes into the averaging process those positions of the principal
axes for which the maximum principal stress o, is greater than or equal to
the product of the constant coefficient ¢, with 0 < ¢ < 1, and the fatigue
limit stress, o4, deduced from the S-N curve plotted for loading ratio
equal to -1. The weight of such positions exponentially depends on the
coefficient my = -1/m, where m is the slope of the S-N curve being
considered. In Fig. 3, the weight function W(ry) for ¢ < 1 is plotted for a
generic time history of the maximum principal stress, together with the
function ¢ *W to be averaged to determine the expected Euler angle ¢;

EXPERIMENTAL ASSESSMENT

The method described in the previous section is applied to analyse the
results obtained from synchronous sinusoidal fatigue tests on thin-walled
cylinders under (0o,, 0,) stress state, where the X-axis coincides with the
longitudinal axis of the specimens, (Rotvel (7)), and on round bars under
(Ox, Txy) stress state (Nishihara and Kawamoto (8)).

Rotvel’s specimens were made of carbon steel with 0.35% C
content, yield stress o, = 255.0 MPa, Young modulus E = 210 GPa,
Poisson ratio v = 0.29, o, = 215.8 MPa, ms = 14.5. Non-zero mean
stresses, O., and O,,, and phase angles, J, equal to 0 or 7, were applied
(Table 1). Nishihara’s specimens were made of Swedish hard steel
with 0.51% C content, o0, = 392.4 MPa, E = 200 GPa, v = 0.30,
Ou = 313.9 MPa, m, = 8.7. Zero mean stresses, Oum and T, and 6 = 0 or
/6 were applied (Table 2). Various amplitudes (0., Oy, and Oxa, Tiya) Of
the applied stresses were considered in both test series.

The fatigue fracture plane position can be defined through the angle
7 between the normal to the fracture plane and the specimen axis. By
assuming that the normal to the expected fatigue fracture plane agrees
‘with the weighted average direction of the maximum principal stress, the
theoretical value 7., is calculated. The comparison of Rotvel’s and
Nishihara’s experimental results (7.,) wWith our theoretical predictions is
presented in Tables 1 and 2, respectively (the expected critical plane is
calculated by assuming ¢ = 0.5). Figures 4 and 5 show a fragment of the
time history in the period, 7, for the applied and principal stresses and
for the reduced Euler angles used in the averaging procedure, for
Rotvel’s test No. 6 and Nishihara’s test No. 3, respectively.

207



ECF 12 - FRACTURE FROM DEFECTS

CONCLUSIONS

The principal stress directions change at each time instant, even under
sinusoidal loading. The theoretical procedure to calculate the three Euler
angles of the principal stress directions from the matrix of the principal
direction cosines (Carpinteri et al (5)) is used here to assess biaxial
sinusoidal fatigue test data. The agreement between theoretical and
experimental results is quite satisfactory.
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Fig. 1. Principal stress directions 123 described through the Euler angles
0,6,y .
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Fig. 2. Sequentially combined rotations ¢,0,y from the X-axis to the 1-
axis and their eight different combinations.
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Fig. 3. Modifications of the time history of angle ¢(r) by means of
weight function W(tr).

TABLE 1 - Comparison of experimental and calculated fatigue fracture
plane position for Rotvel's tests (7).

Ora Om o’ya 03'm 6 nexp ncul

(MPa) (MPa) (MPa) (MPa) (rad) (rad) (rad)

1 227.6 0.0 2.0 0.0 0 0 0
2 6.9 0.0 224.6 -2.9 b n/2 n/2
3 233.5 52.0 191.3 41.2 0 0 0
4 171.7 -24.5 228.6 -11.8 0 T/2 n/2
5 121.6 11.8 156.0 -7.8 0 n/2 n/2
6 155.0 79.5 118.7 0.0 T 0 0
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TABLE 2 - Comparison of experimental and calculated fatigue fracture
plane position for Nishihara's tests (8).

O-Iﬂ me T.X'\'ll Tr)m 6 nBX[J T’L‘(ll
(MPa) (MPa) (MPa) (MPa) (rad) (rad) (rad)
1 0.0 0.0 201.1 0.0 0 025m 025m
2 141.9 0.0 171.3 0.0 0 0.191 0.191
3 142.0 0.0 171.2 0.0 n/6 0.18 1 0.197w
4 255.1 0.0 127.5 0.0 0 0.12 1 0.131
5 255.1 0.0 127.5 0.0 n/6 0.09 7t 0.12 7w
6 308.0 0.0 63.9 0.0 0 0.06 0.06
7 323.7 0.0 0.0 0.0 0 0 0
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Fig. 4. Periodic time history of applied stresses, principal stresses and
Euler angles for Rotvel's test No. 6 (Tab. 1).
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Fig. 5. Periodic time history of applied stresses, principal stresses and
Euler angles for Nishihara's test No. 3 (Tab. 2).
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