ECEF 12 - FRACTURE FROM DEFECTS

FATIGUE STRENGTH OF ANNEALED 0.37% CARBON STEEL CONTAINING
SMALL DEFECT UNDER COMBINED AXIAL AND TORSIONAL LOADING

M. Endo*

Fatigue tests under combined axial and torsional in-phase loading
conditions are carried out on annealed 0.37% carbon steel
specimens containing an artificial small defect; either notch or hole.
On the basis of observations of nonpropagating cracks emanating
from defects, a model is given that, at fatigue limit, a defect in the
combined stress state is equivalent to a mode-I crack having the
same varea and being normal to the maximum principal stress.
Here, varea is the geometrical parameter defined as the square root
of the area of a defect or crack projected onto the plane of
maximum principal stress. The fatigue limits obtained in the
experiments for various defects and loading conditions are well
predicted by the equation proposed in this study.

INTRODUCTION

For uniaxial fatigue, such as tension-compression or rotating-bending fatigue, it has
been known that the fatigue strength of metals containing a small defect or crack is
predicted by the following equations proposed by Murakami and Endo (1):

AK, = 3.3 X107 (Hy + 120) (Varea)' (1
o, = 1.43 (Hy + 120) | (varea)"' )

where AK,,, : stress intensity factor range (MPavm), 0, : fatigue limit stress amplitude
(MPa), Hy, : the Vickers hardness and varea : geometrical parameter (um) which is
defined as the square root of the projected area of a defect or crack.

The objective of this study is to discuss the application of this model, termed the
Varea parameter model (2), to the multiaxial fatigue problem and finally propose an

equation predicting the fatigue strength under combined axial/torsional loading.

* Dept. of Mechanical Engineering, Fukuoka University, Fukuoka 814-0180, Japan.

115



ECF 12 - FRACTURE FROM DEFECTS

MATERIAL AND EXPERIMENTAL PROCEDURE

The material used is an annealed 0.37% carbon steel. The chemical composition
(WL%) is: 0.37C, 0.21Si, 0.65Mn, 0.019P,0.017S, 0.13Cu, 0.06Ni, 0.14Cr. The tensile
strength is 586MPa, the reduction in area is 50.7% and the Vickers hardness is 160.
The geometry of smooth specimen is shown in Fig. 1. The defect specimen has a
small defect artificially machined on the surface. The geometries of defects are
shown in Fig. 2. All specimens were electropolished before fatigue testing.

For combined and torsional loading tests, a hydraulic axial/torsional fatigue
testing machine was used operating at 30Hz. Uniaxial loading tests were carried out
either on a hydraulic uniaxial fatigue testing machine with the operating speed 50Hz
or a rotating-bending testing machine of the uniform moment type, with the operating
speed 57Hz. All tests were performed under the loading conditions of in-phase
tension-compression and reversed torsion (R = -1). The loading ratios of axial to
torsional stress amplitude were 7/o = 0, 1/2, 1, 2 and oo .

The fatigue limits 7, and 0, under the combined loading are defined as the
maximum nominal stresses under which a specimen endured 107 cycles at a constant
loading ratio 7/o. The minimum step of stress level was g = 5MPa when /o<1 and t
= 5MPa whentio = 1.

EXPERIMENTAL RESULTS AND DISCUSSION

Fatigue Limit of Smooth Specimen and Non-detrimental Defect

The fatigue limit of smooth specimen obtained in the tension-compression test
(230MPa) was almost equal to that obtained in the rotating-bending test (235MPa),
and the influence of stress gradient is considered to be small. The ratio of the
rotating-bending fatigue limit (235MPa) to the torsional fatigue limit (145MPa) was
0.62.

Reducing the defect size below a critical size, the fatigue strength of defect
specimen was equal to that of smooth specimen. The critical size of defect which does
not influence the fatigue strength increased with 7/o. For example, a circumferential
notch of 10um depth lowered about 9% the fatigue strength under the uniaxial
loading (t/o = 0) , while under 7/o = 1 the same notch was non-detrimental.

Modeling of Fatigue Limit of Defect Specimen under Combined Stress

Figure 3 shows the nonpropagating cracks observed at the fatigue limits of
notched and holed specimens. In the case of holed specimens, the direction of
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nonpropagating crack emanating from a hole was approximately normal to the
principal stress 0;. On the surface of notch root, many cracks initiated along the plane
of maximum shear stress, then many of them bent or branched lo propagate
approximately in the direction normal to ¢, and finally ceased propagation. Under a
stress slightly higher than the fatigue limit, a crack propagating in the direction
normal to 0, leaded the specimen to break.

The above observational results suggest that the fatigue limit of defect
specimens is determined by the threshold condition for propagation of a mode |
crack (stage 11 crack). This makes one to expect that the varea parameter model,
whose usefulness has been confirmed in the uniaxial fatigue problems (1)(2), could
be applied to the fatigue strength problem of defect specimens under combined stress.
As shown in Fig. 4, therefore, it is modeled in this study that the problem is equivalent
to the fatigue threshold problem of a small mode-1 crack having the same varea and
being normal to the maximum principal stress 0. Here, varea is redefined as the
square root of the area obtained by projecting a defect onto the plane of maximum
principal stress. The values of Varea for defects used in this work are given by the
equations in Fig. 2; see references (1) and (2).

Factors Affecting the Threshold Stress Intensity Factor Range

In Fig. 4, the maximum value of mode 1 stress intensity factor Ky . along the
crack front is calculated by the following equation obtained by elastic analysis (1).
Ko = 0.650 0, vvarea 3)

ma:

The experimental values of the threshold stress intensity factor range AKy . of

defect specimens are calculated using Eq.(3) from the principal stress range at fatigue
limit and varea of a defect. Figure 5 shows the relationship between AKy, ... and
Varea. The line in this figure, predicted by Eq.(1), shows a good agreement with the

uniaxial results (z/o = 0). Other results also show the same dependence of AK, n

h,exp o
Varea, but they are lower than the uniaxial results.

According to the studies on the effect of biaxial stress on the fatigue crack
propagation behaviour at zero mean load (R=-1) (Hopper and Miller (3), Kitagawa et
al (4), Harada et al. (5) and McClung (6)), the effect of stress biaxiality increases with
increasing the stress level and with decreasing the crack length, and the compressive
stress parallel to the crack accelerates the propagation.  Figure 6 shows the
dependence of Ath'exp on the stress biaxiality. In this figure, the ordinate is the
value of AKth,exp normalized by AKm,which is predicted for uniaxial case (r/0= 0)
by Eq.(1), and the abscissa is the principal stress amplitude ratio A = g,/0,. In spite of
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the large difference in defect shape, size and orientation, the effect of defects is
expressed only by a single geometrical parameter, Varea. though a dependence of
AKth,ex
6, we obtain the following equation.

on A is observed. By representing this trend by a straight line shown in Fig.

AK,

th,exp = [(1 - ¢)/1 + I]AK‘h ',¢: 0.86 (4)

Prediction of Fatigue Limit

For a given combination of Hy, Varea and A, fatigue limits, 7, and O, are
predicted from Egs.(1), (3) and (4). Figure 7 shows the comparison of the predicted
values with the experimental results. The values of 7, and 0, on the both axes are
normalized by the uniaxial fatigue limit g, predicted by Eq.(2). The experimental
results obtained for various defects and loading conditions are well predicted. In this
figure, a curve representing the following Findley (7) type equation is also shown.

2 _ y 2
OO+ (T #05)" = 1 ,¢p=0.86 (5
The difference between two curves is small. Prediction by Eq.(5) israther useful than
Eq.(4) because of the easer calculation. In Eq.(5), 0, is predicted by Eq.(2) from a

material parameter, Hy;, and a geometrical parameter of a defect, varea.
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Figure 1 Smooth specimen geometry; Figure 2 Shapes and dimensions of

dimensions in millimeters. defects.

50um

Axial direction Axial direction

(a) 1. Jo. =112 (rcw:72.5MPa, (b) Torsion: T 0 =% (rCW:125MPa,

CW T CcW

UCW:145MPa), Hole: d=h=100um. (ICW:O), Notch: p=50um, t=200um.

Figure 3 Nonpropagating cracks observed at fatigue limit.
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