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THE STRESS INTENSITY FACTOR FOR SMALL CRACKS AT
MICRO-NOTCHES UNDER TORSION

S. Beretta °, Y. Murakami t

Existing approaches to the torsional fatigue strength of pieces
containing defects were based on the stress concentration factor
concept. However, the torsional fatigue limit of specimens containing
small holes is controlled by the threshold condition of small cracks
(6,7). Thercfore, the value of T./0, for specimens containing small
defects must be studied from the point of fracture mechanics.

The scope of this paper is to address the calculation of SIF for a
small crack emanating from a 3-D hole under biaxial state of stress by
using the weight function method. The obtained results are in good
accordance with experimental results on specimens with defects.

INTRODUCTION

Most of the theories about the fatigue strength of a material or a component under torsional
loading deal with the definition of a limit stress of the material supposed to be defect-free.
From this point of view the typical ratio of torsional ~To- to bending - Oy~ fatigue limits
of smooth specimens is about 0.58 according to Sines theory (1).

If the cracks or defects inherently exist in the material, the ratio of the torsional fatigue
strength to the bending fatigue strength should be different from that of plain (defect free)
specimens. This is because the propagation direction of a crack emanating from a defect
and its stress intensity factor depend on its size, orientation and shape.

The fatigue strength of a component containing defects or inhomogeneities subjected to
axial or bending loads can be predicted based on the models of Murakami and Endo (2),
who showed that at the fatigue limit small nonpropagating cracks are always present at the
defect tip (2). Because of this fact the inhomogeneities can be treated like cracks and
accordingly the fatigue limit — G- has to be calculated as the cyclic threshold stress at
which the crack emanating from the defects does not propagate. This type of analysis,
which implies to calculate the SIF for a crack with an irregular shape and to model the
relationship between AKy and flaw size, can be easily done with the Varea model by
Murakami and Endo (3).
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Existing approaches to the torsional fatigue strength of pieces containing defects were
based on the stress concentration factor concept. Goodier (4) and Mitchell (5), respectively
analysing spherical cavities and 2-D holes, calculated K; in bending and in torsion and they
predicted a ratio between the fatigue limits - t,./o,, — of about 0.75.

However, Murakami and co-workers (6,7) showed that the torsional fatigue limit of
specimens containing small holes is controlled by the threshold condition of small cracks
in the direction (£ 45° to specimens axis) perpendicular to the maximum principal stress
(see Fig. 1). Therefore, the value of 1./0, for specimens containing small defects must be
studied from the point of fracture mechanics. In (6) the experimental results were analysed
by using the 2-D exact solutions of Murakami (8), who studied the SIF for a crack
emanating from a hole subjected to a biaxial state of stress. Considering cracks with a/R in
the range 0.1-0.3, the ratio between SIF under tension and torsion results to be about 0.8.

This approach to the problem of surface defects under torsional and multiaxial loading is
extremely simple and it can be easily applied since it reduces the problem to a mode I
fatigue strength estimation. However, in spite of the predicted value t./c,= 0.8, the
experimental results on 3-D artificial notches by Murakami et al. (6,7) and on natural
defects by Mitchell (5) and Endo (9) give an average value of 0.85.

The scope of this paper is to address the calculation of SIF for a small crack emanating
from a 3-D hole under biaxial state of stress by using the weight function method and the
solutions for the stress distribution near holes and hemispherical pits. The final objective of
this paper is not to calculate KI but rather to obtain a precise evaluation of the ratio 1,/cy,.

SIF FOR SMALL CRACKS AT HOLES AND SPHERICAL CAVITIES

Preliminary calculations

The stress distribution in the neighbourhood of a circular hole in a 2-D plate subjected to
any stress pattern can be calculated as the superposition of two stress fields caused by the
principal stresses acting on the plate. In particular the stress o, acting at point A is the sum
of the two stress distributions from Kirsch (10) (Figure 2):

2 4
stress caused by s; o, =S1-];(x,R)=Sl-[l/2-(l+ (RR )2)+1/2'(1+3'(RR )4)} M
+x +x

2 4
stress caused by s; o, =S2.f2(x,R)=Sz.I:1/2‘(1+(RR )2)_1/2,(1+3,(RR )4)} 2)
+Xx +Xx

Some preliminary SIF calculations were carried out considering a crack emanating from a
hole in a plate subjected to a tensile stress and to a shear stress. The SIF was calculated
using the Bruekner WF (11) for an edge crack in a semi-infinite plate and the stress
distribution o,=c1+02 (tension: S2=0; shear S2=-S1). The outcomes of these calculations
were then compared with the solutions of Murakami (8).

The result, in accordance to Schjive analyses (12), was that the approximate solutions
had a precision of 5% for a/R<0.2. However, the ratio Klien/KIsner is almost exact up to
a/R= 0.2 and the maximum error is less than 5% in the range 0.2<a/R< 1 (see Figure 3). It
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has to be remarked that Klien/Kleor tends to 1 because the effect of o, decreases as the
crack grows.

3-D Cormer cracks

Because of the good outcomes of 2-D analysis, the straight edge approximation was also
used for calculating the SIF for small cracks at cylindrical holes and hemispherical surface
pits under tension and torsion. Figure 4 shows the shape of the corner crack.

We approximate the stress distribution in the neighbourhood of 3-D defects by the
following equation:

o(x,R) =%.51-f,(x,zz)—c2 .82 f,(x,R) ©)

whose coefficients C, and C, are the stress concentration factors on the edge of the 3-D
cavity caused by the remote stress ficlds S1 and S2. This equation is compared in Figure 5
with the solutions of the stress distributions around cylindrical holes and hemispherical
surface pits by Murakami et al. (13) and by Noguchi et al. (14, 15). These three curves are
in good agreement.

The calculation of KI was then carried by using the Weight Function for a corner crack by
Shiratori et al. (13) who gave a SIF solution:

K, =34, K, @)

n=0
the stress distribution being described by a polynomial of the type (n=1-x/a):
3

o= 4,n"0, ©)

n=0

The application of Shiratori’s WF was firstly checked on the calculation of SIF for a small
comer crack at a hole in a finite plate. The comparison of the results with Newman’s
solutions (16) gave a precision similar to the previous 2-D analyses.

The whole procedure then allowed us to calculate KI at the tips of small cracks at
cylindrical holes and hemispherical pit under tension and shear. The resulting Kliens/Klshear
data for semicircular cracks (a/b=1) are shown in the Figures 6 and 7.

CONCLUDING REMARKS

The obtained results clearly show that the typical ratios of Klien/Klsheo fall in the range
0.83-0.87, with an average value of 0.85.

The experimental results obtained on defects are summarised in Figure 8, where the
ratio between fatigue limit under torsion and bending - t./oy, - is plotted against S.. It is
worth remarking that the data of Murakami et al. were obtained with drilled holes (d/h=1),
those of Mitchell with natural defects and those of Endo pertain to nodular cast iron.

The data in general fall within the predicted range, except the one of (7) which is a
medium carbon steel having a strong texture in the rolled direction, i.e. in the direction of
specimen axis.
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The good agreement between the present theoretical Kligny/Klgew ratio and the
experimental results confirms the fact that the fatigue limit of components containing
defects can be accurately predicted by treating the defects as cracks. The method of
analysis here proposed can be easily applied to any combination of biaxial stresses in order
to precisely estimate the fatigue limit of surface and sub-surface defects.
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Figure 1 — Nonpropagating cracks from a Figure 2 — Circular hole in a 2-D plate
micro-notch at torsional fatigue limit (7) subjected to biaxial loading
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Figure 3 — Kliens/Klihear for a small crack ata Figure 4 — Geometry of the small cracks
hole in a 2-D plate examined
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Figure 5 - Stress distribution around 3-D Figure 6 - Kln/Klgea for a small crack

notches under tensile stress (b/a=1) at a hemispherical pit.
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Figure 7 - Kliens/Klsheoar for a small crack Figure 8 — Predicted t,/c, range against
(b/a=1) at a cylindrical hole. experimental results.
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