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ABSTRACT. Numerical simulation of the crack propagation in the geometrically non-
standard specimen is presented. The procedure is automatic to that point that only the 
specimen's geometry, the starting point of the crack and material parameters are 
needed as input and the output of the simulation is, among other things, the crack path, 
the stress intensity factors and number of cycles depending on the crack length. Two-
dimensional finite element method is used in the calculations. Crack growth is 
simulated in a series of crack increments of finite size. Finite element mesh is 
automatically generated after each crack increment. Numerical results are compared to 
the results of the experiment on a specimen with non-standard geometry. During the 
experiment the crack length was measured automatically from the compliance of the 
specimen. Experimentally determined fatigue crack evolution is approximated by a 4-
parameter empirical function, the derivative of which is used to describe the crack rate 
vs. stress intensity factor relationship. 
 
 
INTRODUCTION 
 
The influence of the cracks on a structure can be indirectly considered through their 
influence on material parameters. This "smeared crack" approach is usually used in 
damage mechanics. The direct approach used in fracture mechanics is to consider actual 
configuration of the crack(s) as two distinct but geometrically coincident surfaces. This 
second approach is used throughout the present paper. 

Basic analysis of cracks in the structure can be presented in form of two following 
relationships: 
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The first inequality is the relation between the bearing capacity of the structure or 

part of it and the size of the crack. KIc is fracture toughness and is considered as material 
parameter and the stress intensity factor KI is numerical value depending on the 
geometry of the structural element containing the crack, the load P and the crack length 
a. The equality in Eq. 1 means that a critical state is reached, possibly leading to 
structural failure.  



Equation 2 represents the time evolution of the crack in term of crack growth rate 
da/dt. The function F is determined from the dynamical experiment in which the 
specimen is exposed to a load P that is periodically changing in time t.  

The analysis is thus a combination of numerical and experimental methods, where 
we use numerical calculations to determine the relation KI(a,P), and experiments to 
establish material parameter KIc and the function F. In this paper the procedure is shown 
for a non-standard fracture mechanical specimen called CTN, which is slightly changed 
standard CT specimen. We could consider it as a detail that it critical for the behaviour 
of hypothetical structure. With the non-standard geometry we wish to show how 
principles of fracture mechanics, with suitably developed numerical and experimental 
methods, can be successfully applied in the analysis of fatigue crack propagation of an 
arbitrary structural detail.  
 
 
NUMERICAL SIMULATION 
 
Numerical simulation of fatigue crack growth, which is presented in this paper, is based 
on the two-dimensional finite element method (FEM). 
 

 
Figure 1. The contour of the CTN specimen as the input to the numerical analysis. 

 
 

Input data for the simulation are the contour of the plane region describing the model 
geometry, the point where the crack propagation starts and the material characteristics 
of the model. In our case it is the contour of the CTN specimen from Fig. 1 with the 
dimensions: width W=50 mm, thickness B=25 mm, starting crack length a0=24.5 mm 
and the dimension of the cutout w=14 mm. Similar specimen shape has been used by 
Lining [1]. Linear elastic material model was chosen with usual parameters for steel: 
Young modulus E=2.1 105 MPa and Poisson's ratio ν=0.3. Plane strain was assumed.  



Crack growth was simulated with a series of discrete crack increments ∆a. Automatic 
generation of finite element mesh over the whole domain was used after each crack 
increment (Fig. 2). The mesh generator is based on the algorithm of Zhu et.al. [2] and is 
described in more detail by Kovše [3]. After each mesh generation the displacement, 
deformation and stress fields were calculated according to standard FEM procedure and 
then the following parameters of LEFM (linear elastic fracture mechanics) were 
calculated: stress intensity factors KI, KII, J-integral, strain energy release rate G and the 
direction of crack growth φ. The crack was then extended by a suitable increment length 
in the direction φ and the procedure was repeated.  

 
Figure 2. The finite element mesh generated automatically at the crack length a=39 mm. 
 
 

The fracture mechanics' parameters were calculated using the virtual crack extension 
(VCE) method. The method consist of extending the crack tip for a small distance (of 
the order 10-4 of the length of the finite element at the crack tip), and calculating the 
strain energy release rate G from the difference of potential energies before and after the 
crack tip extension. It can be shown (see Hellen [4]) that with this method only one 
finite element calculation is needed for the determination of G. With the separation of 
displacement field on the symmetrical and non-symmetrical part (e.g. Xie et.al. [5]) we 
can calculate GI and GII , which correspond to the first and second fracture mode 
respectively, and accordingly KI and KII . The angle φ represents the direction of the 
next crack increment. We can determine φ using different methods: (a) from the 
analytical expression f(KI(φ),KII(φ))=0 corresponding to the maximal tension stress 
direction (see e.g. Evald and Wanhill [6]); (b) as a direction of maximal strain energy 
release rate G; (c) as a direction perpendicular to the internal force F at the crack tip. 
The internal force F is associated with the finite element mesh at the crack tip and is 
calculated as a reaction by which elements on the upper face of the crack act upon the 
elements on the lower face of the crack [7]. Most of the results in this paper are based 
on the second method, numerical implementation of which was extending the crack tip 
in different directions and finding the direction where G was maximal.  



Using the above procedure with a series of successive crack increments a geometry 
of the crack path is obtained as well as the dependence of fracture mechanics parameters 
on the crack length a: KI(a), KII(a), J(a), G(a), φ(a). The compliance dependence on 
crack length c=a(a) is also obtained. It is used for crack length measurement during the 
experiment. 

 

 
Figure 3. FEM analysis. The dependencies u=u(α) and KI=KI(α) for the CTN model 

and the unit force P=1 kN. 
 
 

The relationship KI=KI(α) for the CTN model is presented on Fig. 3. With α=a/W 
we denoted the non-dimensional crack length. If we know the fracture toughness of the 
material KIc, we can determine the critical crack length ac=αcW, as indicated in Fig. 3. 
The crack does not propagate in a straight line in the CTN specimen (see Fig. 5). In this 
paper we define the crack length a as the arc length - although other definitions of the 
crack length could also have been taken.  

 
Second Order Crack Path Simulation 

The crack path can be represented as a parametrically defined curve r in two 
dimensional space, using the crack arc length a as the natural parameter. The vector r 
and its derivative are: 
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Simulating the crack growth with successive discrete crack increments, as presented 
above, is actually the first order (Euler) integration of Eq. 3. The method requires only 
one calculation of the tangent vector t at each step, but the calculated path diverges 
quickly from the exact one, unless very small crack length increments ∆ai are used.  



 
A better method is the one of the predictor-corrector type. This method requires two 

calculation of the tangent vector t at each step. In this section we show the predictor-
corrector method for variable crack arc length increments ∆ai=ai-ai-1 with the mid-point 
integration rule for predictor and trapezoidal integration formula for corrector. We will 
consider only the coordinate x, the development for the coordinate y being identical. 
The formulas for the predictor x(p) and the corrector x(c) at crack increment i+1 are:  
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With the assumption that the third derivative x’’’ is constant, we can estimate the 

local error of the corrector ε(c)
i+1 (see detailed development in [7]): 
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When the maximal permissible error ε is given, and the interval ∆ai is known, we can 

calculate the length of the interval ∆ai+1=γ ∆ai. at which the error in crack coordinate 
will be less or equal to ε.  
 

 
Figure 4. The determination of the crack path with the predictor-corrector method. 

 
 

The determination of the crack path increment with the predictor-corrector method is 
shown on Fig. 3. In the increment i we first calculate the angle φi and determine the 
predictor coordinates with Eq. 4. After extending the crack, the new FEM model is 
constructed and solved and the crack growth angle φi+1 is calculated. If the error ε(c)

i+1 
in increment i is bigger than the permissible one, the procedure is repeated for step i 
with smaller crack increment, otherwise new crack increment length is obtained and the 
procedure repeated for the next step i+1.  
 
 



FATIGUE EXPERIMENTS AND COMPARISON WITH THE CALCULATION 
 
In order to determine the law F from Eq. 2 we make the experiment in which the 
specimen is loaded with periodically changing force with frequency f and amplitude 
∆P=Pmax-Pmin for a certain period of time or accordingly with a certain number of load 
cycles. During the experiment the number of cycles N is counted and crack length a is 
measured from the compliance c=c(a).  

In the following we present the results of the experiment and the calculation for the 
CTN specimen. We conducted the experiment with the CTN specimen loaded with 
cyclic loading frequency f=4 Hz, constant amplitude ∆P=10 kN and with the ratio 
R=Pmin/Pmax=0.2. In Fig. 5 we give the comparison of the crack path at the end of the 
experiment and the crack path obtained by numerical simulation.  

 
Figure 5. Comparison of numerically simulated crack path with the experimental one. 
 
 

During the experiment the crack length a was continuously determined from the 
compliance. To assess the accuracy of this method we measured the crack length at 
several time intervals also using the optical microscope. The comparison of both 
methods is shown in Fig. 6.  

To determine the function F from Eq. 2 we need to calculate the derivative da/dt or 
da/dN. Direct calculation of the derivative da/dN from the measured pairs of values 
(a,N) (i.e. numerical differentiation) is not recommended, because it produces large 
scatter due to measurement and numerical inaccuracies (see Smith and Hooeppner [8] 
and Fig. 7). We rather approximated the measured relationship a=a(N) with exponential 
function y(N)=A+e(C N+D)B (shown in Fig. 6). The crack growth rate is then the 
derivative of this function: da/dN=dy/dN=y’. The unknown coefficients A, B, C, D were 
fitted using the special procedure (Smith and Hooeppner [8]):   



 
Figure 6. Crack length as a function of the number of cycles. Comparison of two 

measurement methods: optical and compliance methods. 
 
 

A=24.5, B=9.9902, C=11.02 106,  D=0.3417 
 

With the known functions a=y(N), da/dN=y‘(N) and KI(a,P)=KI(y(N),P) we know 
also the relationship F. For the CTN specimen this relationship is shown in Fig. 7. We 
can use it for the integration of Eq. 2 instead of the standard Paris law, which represents 
the linearisation of the portion of this relationship in the logarithmic scale.  

 
 

CONCLUSION 
 
Numerical and experimental analysis of the fatigue crack propagation in the 
geometrically non-standard specimen was shown. The numerical simulation is made 
considerably easier with the use of the automatic generation of the finite element mesh 
after each crack increment. With this simulation we can obtain the dependence of the 
arbitrary fracture mechanical parameter on the crack length. The crack path of non-
symmetrical i.e. curved cracks can be predicted with sufficient accuracy. The results of 
the simulation can also be used to measure crack length in arbitrary shaped specimen 
continuously during the fatigue experiment. It has been shown that with the use of 
approximation functions the crack growth rate law can be more suitably modelled than 
with the Paris line, which represents just a portion of that law. This can be important for 
the more realistic prediction of the remaining life of a structural component. 
 



 
Figure 7. The crack growth rate law from the experiment on the CTN specimen. The 

values of da/dN are obtained with numerical differentiation of the measured values and 
with the differentiation of the approximating function y(N). Also shown is the Paris line. 
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