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ABSTRACT. In this paper the stiffness matrix for a straight two-node cracked 
Timoshenko beam element is derived. The equation of motion of the complete system 
includes translational and rotational mass matrices. The vibration characteristics of 
plane frame structures with a single edge crack are investigated using a modified line-
spring model. The natural frequencies and the corresponding mode shapes are 
determined for edge cracks of different depths.   By using an extension of the Paris 
crack propagation law, the fatigue evolution of cracked frame-structures and the 
determination of the bending moment redistribution is analysed and graphically 
illustrated. The retarding effect on the crack growth rate in the case of redundant 
structures subjected to repeated loading is pointed out.   
 
 
INTRODUCTION 
 
As is well known, a structure is designed to perform certain functions. It is put out of 
use when, after reaching a certain limit state, it is no longer meets the requirements for 
which it was devised. In the case of a cracked structural member some modes of failure  
(limit states) can be considered, such as compression instability buckling, ultimate 
plastic collapse, brittle fracture, fatigue, etc. The above different failure mechanisms 
may also affect one another. For a cracked structural element a main problem is to 
determine whether the dominant crack reaches the critical conditions in the interval 
between two following inspections under ordinary conditions of use.  In the first case 
the structural element must be replaced or repaired, while in the second case the 
reliability of the structural element is decided during the subsequent inspection. 

In order to predict the component life in such circumstances, of interest is the 
estimation of fatigue life based on the number of stress cycles at the stage of crack 
growth. Empirical formulas estimating the rate of growth of fatigue cracks have long 
been known for special cases. However, only the inclusion of stress intensity factor 
among the parameters affecting crack propagation makes possible a quantitative and 
qualitative analysis of the laws of crack growth under repeated loading.  

To treat with the rate of crack growth as depending on the stress intensity factor, 
numerous relations have been proposed. All these relations can be considered as an 
extension of the Paris’ formula. It is worth noting that, a crack on a structural member 



introduces a local flexibility which is a function of the depth crack. This flexibility 
changes the static and dynamic behaviour of the structures. The fracture mechanics 
approach can yield the local compliances due to the cracked sections for which more 
and more expressions of Stress Intensity Factors (SIFs) should be developed. The local 
flexibility of the cracked region of the structural element was put into relation with the 
SIFs. A general method for extending fracture mechanics through the compliance 
concept to the analysis of a structure containing cracked members was considered by 
Okamura et al. [1].  

In this paper, the stiffness matrix for a straight two-node cracked Timoshenko beam 
element is derived. The equation of motion of the complete system in a fixed co-
ordinate system includes translational and rotational mass matrices. The problem of 
determining the natural vibration frequencies and the associated mode shapes of a 
system always leads to solving an eigenvalue problem, where the mass and stiffness 
matrices are nearly symmetric and positive definite. A parametric study of a transverse 
open crack is carried out for various crack depths and the changes in eigenfrequencies 
as a function of crack position and fatigue crack growth is determined. By supposing 
that the external load takes all the values between zero and a fixed maximum value, the 
stress intensity factor range is calculated. During each cycle of loading a definite 
increment of crack length can be obtained. The crack length therewith increases and this 
new length must be taken as the initial length in the calculation for the next cycle.  

 
 

METHOD OF ANALYSIS 
 
As a general rule, a crack in a beam element introduces a local flexibility that affects its 
static and dynamic behaviour. One of the objective of the paper is to determine the 
vibration characteristics of a uniform Timoshenko beam element with a single edge 
crack using a modified line-spring model. The governing matrix equation for free 
vibrations of the cracked beam is derived by assembly of the conventional cubic beam 
elements in conjunction with the modified line-spring model. The “springs” have the 
features of having two nodes and zero length. The resulting eigenvalue problems are 
solved to find the natural frequencies and the corresponding mode shapes of  structures.  

 A pre-cracked bending specimen is modelled by one-dimensional beam elements 
and a line-spring representing the stiffness or compliance of a cracked part. Then the 
following finite element equation for a transient dynamic analysis is obtained: 
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sMU+CU+ K + K U = F                                                 (1) 

 
where M, C and K are the mass matrix, the damping matrix and the stiffness matrix of 
the system, respectively, which are obtained using the usual finite element procedure. U 
and F are the vectors whose components are the nodal displacements and forces, 

respectively; &U and Ü are the vectors whose components are the nodal velocities and 
accelerations, respectively. Ks is the stiffness matrix of a line-spring in the extended 



form. Let us consider a model for evaluating the local stiffness matrix ks, as shown in 
Fig.1, which indicates dimensions and sign conventions for forces and corresponding 
displacements. Then the following relation is obtained: 
 
                                                                s s sF = k u                                                          (2) 
 
where Fs=[ P1, V1, M1, P2, V2, M2]

T and us=[ u1 w1 è1 u2 w2 è 2]
T. The stiffness matrix of a 

line-spring  ks is given by Tharp [2] as follows: 
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where D=ëppëmm–ë2

mp. In Eq. 3, ëpp , ëmm , ëvv   are compliance expressions for extension, 
bending and shear, respectively and  ëmv=0, ëpv=0  are compliances for the coupling of 
bending and shearing,  extension and shearing respectively. The compliance matrix for 
this cracked member may be derived according to the theory presented by Okamura et 
al. [3] and Carpinteri et al. [4] as 
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In Eqs 4, KIP and KIM are mode I stress intensity factors caused by axial load P and 

bending moment M respectively, and KIIV is mode II stress intensity factor caused by 
shear force V. E and í are the Young’s modulus and the Poisson’s ratio, respectively. 
Cracked area is denoted by A and its infinitesimal increment dA is equal to Bda, where 
B is thickness and a is crack length. The following equations for  KIP, KIM and KIIV are 
utilized in the present paper: 
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Figure 1. Model for evaluating the stiffness of a line spring. 
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where î=a/H. The functions Fp(î), Fm(î), and Fv(î), are given by Brown & Srawley [5] 
and Tharp [2]. 
 

 
FATIGUE CRACK GROWTH CALCULATION 
 
The concept of the damage tolerance design and increased demand for accurate 
component life predictions have provided growing demand for the study of fatigue 
crack growth in mechanical components. Cracks growing under opening or mode I 
mechanism is concerned with the traditional applications of fracture mechanics.  

It should be noted that many service failures occur when cracks are subjected to 
mixed mode loadings. Various uniaxially loaded materials often contain randomly 
oriented defects and cracks which are subjected to a mixed mode state by virtue of their 
orientation with respect to the loading axis. Usually, mixed mode fatigue is 
characterized by crack propagation in a non-self similar manner. In other words, when 
subjected to mixed mode loadings, a crack changes its growth direction. Therefore, 
under mixed mode loading conditions, not only the fatigue crack growth rate is of 
importance, but also the crack growth direction. Several criteria can be found in the 
literature regarding the crack growth direction under mixed mode loading. Within the 
limits of linear elastic fracture mechanics, the driving force of crack propagation is 
known to be a function of the applied stress intensity factor range ÄK. Among the 
developed relations for predicting the crack growth rate under cyclic loading, the well 
known Erdogan-Paris formula [6] is the simplest one. It is expressed as a function of an 
effective stress intensity factor as follows: 
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where C and m are empirical coefficients for the given material, ÄKeff= Kmax –Kmin is the 
range  of the combined mode I and II stress intensity factor for stress cycle and N is the 
number of cycles. By supposing that the external load takes all the values between zero 
and a fixed maximum value and considering the combined mode I and II loadings, the 
ÄKeff =ÄKeq proposed by the authors of this paper is: 
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Under mixed mode conditions, it is assumed that deformations due to mode I and II 

loads are not interactive. The number of cycles required to propagate a crack  from the 
initial size ai to some size af may be obtained by integrating the relationship (8). For 
ferritic-perlitic steels the rate da/dN of fatigue crack growth can be expressed by the 
following equation [7]: 
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The total number of cycles required for the crack extension from î0 to î1 is given by: 
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in which î0=a0/H and î1=a1/H are the initial and final dimensionless crack depths. 

Consider a Timoshenko cracked frame structure having double fixed end with a 
crack at 0.1 m  from the  left clamped end as shown in  Fig. 2. The height and the length 
of the frame are 1 m, whereas the thickness B and the depth H of the rectangular cross 
section are B = 0.05 m and H = 0.1 m, respectively. The elastic modulus E of the 
material, the Poisson’s ratio and the maximum value of the external load are assumed to 
be E = 2.1 x 105 MPa, í = 0.3,  q = 105 Nm-1, respectively. The edge crack of initial 
length î0= a/H = 0.001 has been supposed to exist before any loading application. 
Figure 2 shows the variation of the axial force, the shear force and the bending moment 
as a function of the dimensionless crack depth at the cracked section. It can be seen that 
the bending moment tends to zero when deeper cracks are considered. The trend in 
discussion is also illustrated in the following Fig. 4. Figure 3 shows the total number of 
load repetitions N which must be applied for the crack growth from the initial length 
î0= a/H = 0.001 to some size î. In particular, this figure shows  the total number of load 
repetitions N when the driving force of crack propagation   is a function of  the applied  
stress   intensity   factor  range  ÄKeff  = ÄKIP, depending on the axial force P, and when 
ÄKeff = ÄKIM depends on the bending moment M. Moreover, Fig. 3 illustrates the total 
number of load repetitions N when ÄKeff = ÄKIP +ÄKIM as well as when the total 
number of load repetitions N is a function of the ÄKeff =ÄKeq as proposed by the authors 
in Eq. (9). In Tab.1 it can be seen the numerical values of  fatigue life calculation 
according to various criteria of loading combinations. 



 
Figure 2. Variation of axial force, bending moment and shear force, at the cracked 

section, as a function of the dimensionless crack depth. 
 

 
Figure 3. Fatigue cycles calculation according to various criteria of loading 

combinations. 
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Figure 4. Bending moment redistribution for the first two modal shapes when various 

values of the crack depth are investigated. 
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Table 1. Numerical values of the cycles number N as a function of various criteria of 
loading combinations and for five dimensionless crack depths. 

 

a/H 0.1044 0.2106 0.305 0.4112 0.5056 
ÄKeff = ÄKIP 
(cycles x 1010) 

3.2069 3.3898 3.4199 3.4290 3.4312 

ÄKeff = ÄKIM 
(cycles x 106) 

0.1537 0.2637 0.5115 1.4149 4.7845 

ÄKeff =ÄKIP+ÄKIM 
(cycles x 106) 

0.1459 0.2425 0.4273 0.9032 1.7520 

ÄKeff = ÄKeq 
(cycles x 106) 

0.1457 0.2400 0.4064 0.7472 1.1509 

 
 

Figure 4 shows the first and second modal shapes of the uncracked frame as well as  
the corresponding bending moment distributions along the frame for three values of the 
dimensionless crack depth, î = a/H = 0.1, î = a/H = 0.3 and î = a/H = 0.5, obtained 
from a dynamic analysis. In Fig. 4, f0i (i=1,2) are the first two frequencies of the 
uncracked frame and fi the frequencies of cracked frames for three different crack 
depths. It should be noted that, when deeper cracks are considered, a migration of the 
bending moment from the centrally cracked zone towards the stiffest parts of the 
structure is produced.  
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