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ABSTRACT. The aim of the paper is the determination of the propagation path of an in-
plane perturbed tunnel-crack embedded in an infinite isotropic elastic body loaded in pure
mode I through some uniform stress applied at infinity. The crack advance is supposed
to be governed by the stress intensity factor, through Paris’ law in fatigue and Irwin’s
criterion in brittle fracture. In practice, the advance is computed in both fatigue and
brittle fracture by a Paris’ type law, Irwin’s criterion being regularized by a procedure
analogous to the “viscoplastic regularization” in plasticity. The necessary determination
of the stress intensity factor along the front for all the stages of propagation is achieved by
successive iterations of Bueckner-Rice weight-function theory, that gives the variation of
the stress intensity factor along the crack front arising from some small arbitrary coplanar
perturbation of the front. It is closely linked to previous numerical works of Bower and
Ortiz [1] and revisited by Lazarus [2] for closed crack fronts. It is adapted here to the
tunnel-crack, that is to two crack fronts. In fatigue, two kinds of propagation paths can
be distinguished depending on the width of the perturbation. If this width is less than
a critical value, the perturbation vanishes, so that the front becomes rectilinear (stable
case). Otherwise, the perturbation increases so that the front becomes more and more
perturbed (unstable case). The numerical study allows us, however to study the non-
linear effects due to the finite size of the perturbation. It is noticed that these effects
enhance the instability and slacken the come-back to the rectilinear configuration in the
stable case. In brittle fracture, it appears that the perturbation increases in width and
then in amplitude; that is, it behaves in a kind of unstable manner whatever the initial
perturbation.
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INTRODUCTION

Figure 1: Perturbed crack front

Let us consider a planar tunnel-crack with perturbed front, embedded in an infinite isotrop-
ic elastic body loaded in pure mode I through some uniform stress applied at infinity (see
figure 1). The aim of this paper is to study the in-plane propagation path in both fatigue
and brittle fracture, and in particular the stability of the rectilinear configuration of the
crack front versus inplane perturbations. The crack advance is supposed to be governed
by the stress intensity factor (SIF), through either Paris’ law in fatigue, or Irwin’s criterion
in brittle fracture.

The first part briefly describes the numerical method developped : Paris’ type law is
written so as to deal with both fatigue and brittle fracture and the Bueckner-Rice weight
function theory is used to compute the necessary determination of the SIF along the front
at all stage of propagation. The main advantage of this iterative method (see Lazarus [2])
is that only one dimensional integrals along the crack front are involved so that only the
one dimensional meshing of the crack is needed, instead of the 3D meshing of the whole
body as in the FEM. At last, to illustrate the method, we present the results obtained for
the stability problem of the straight configuration of the front, in which the non-linearity
effects can be investigated through this numerical approach.

NUMERICAL PROCEDURE

Let us study the propagation path of a planar crack with arbitrary frontF subjected to
uniform remote loading�1 (see figure 2). For numerical purpose, the propagation path is
described by very closed to each other steps.Æa(s; �) denotes the advance between steps
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� and� + 1 andK(s; �) the SIF at step� , both at points of the front.
Next section shows how the advanceÆa(s; �) is obtained in both fatigue and brittle

fracture by a Paris’ type law, involving the SIF. Second section shows how to update this
SIF using Bueckner-Rice weight function theory.
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Figure 2: Small (magnified on the figure for the sake of visibility) perturbation of the
crack front F .

Propagation Laws
In fatigue, propagation can be described by the Paris’ law :

@a

@�
= C(�K)n

where @a=@� denotes the rate (� could be interpreted as “kinematical time” ) of crack
advance at any position on the crack front, �K the amplitude of the cyclic mode I SIF at
that point, and C and n positive material constants.

This could be written :

Æa(s; �) = Æamax(�)

�
K(s; �)

kKk
1
(�)

�n

(1)

where kKk
1
(�) = sup

s2F

K(s; �), Æamax(�) the maximum distance between step � and

� + 1.

In brittle fracture, Irwin’s criterion reads :
�

K < Kc ) no propagation (Æa � 0)
K = Kc ) possible propagation (Æa � 0)
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The Kc factor is known as tenacity of the material.
To avoid such a sequential and irregular criterion, one could adapt the Paris’ law, letting

the exponent go to infinity :

Æa(s; �) = Æamax(�)

�
K(s; �)

kKk
1
(�)

�
n

; n! +1 (2)

So that Æa(s; �) tends to 0 with n if K(s; �) is smaller than a value linked to Kc (here
kKk

1
(�)) or could be non zero if K(s; �) is equal to this value.

Bueckner-Rice Weight Function Theory
Let us suppose now that K(s; �) is known at step � . The advance is then given by (1) or
(2). Rice[3] has shown that the SIF at step � +1 changes by the amount ÆK(s0) given, to
the first order in the perturbation, by the formula :

ÆK(s0) =
1

2�
PV

Z
F

W (s; s0)

D2(s; s0)
K(s)

�
Æa(s)� Æa�(s)

�
ds (3)

where D denotes the Cartesian distance, W a function of two points s0 and s (which also
depends upon the entire geometry of the body and the crack) linked to the weight function
of the crack.

A similar formula for the amount ÆW (s1; s2) can be stated :

ÆW (s1; s2) =
D

2(s1; s2)

2�
PV

Z
F

W (s; s1)W (s; s2)

D2(s; s1)D2(s; s2)

�
Æa(s)� Æa��(s)

�
ds (4)

Formulae (3) and (4) are legitimate for special normal advances Æa�(s) and Æa��(s)
that preserve the shape of the front and such that Æa�(s0) = Æa(s0), Æa��(s1) = Æa(s1)
and Æa��(s2) = Æa(s2) so as to ensure the existence of the integrals as Cauchy principal
value (PV). Here, these advances are built from a combination of translations, rotation
and scaling (see [1] for example).

Formulae (1) or (2), (3) and (4) lead now to an iterative scheme that can be used to
deal with many kinds of propagation problems : the following part study one of these.

APPLICATION TO THE PERTURBED TUNNEL-CRACK

Leblond [4] has shown that a sinusoidal slightly perturbed tunnel-crack front tends to re-
cover the straight configuration if the wavelength is smaller than a critical value �c and
tends to develop if it is bigger than �c.

The idea here is to extand these results to propagation path using the procedure depict-
ed above. For numerical reasons, it was difficult to study sinusoidal perturbations. Instead
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Figure 3: Perturbed tunnel-crack.

the propagation of perturbations depicted in figure 3 has been studied in both fatigue and
brittle fracture for several values of �a and T .

Adaptation Of The Method To Infinite Crack Fronts
The crack fronts are truncated: only the perturbation and a piece of straight front are
meshed. Integrals along the meshed part of the front are evaluted by classical numerical
linear interpolation (see Lazarus [2]). Integrals along the not meshed part are almost
unchanged by the perturbation provided that the meshed straight part is sufficiently large
toward perturbation size. Hence these integrals are evaluated by comparison with the
known values of these integrals in the lack of perturbation.

Fatigue Propagation
Two kinds of propagation paths can be distinguished, depending on the initial width of the
perturbation. For the narrow one, the perturbation decays in time, so that the front tends
to get back, during its propagation, to the initial straight configuration (the “Stable case”
figure 4), whereas for the large ones, an increase of the perturbation can be observed (the
“Unstable case” fi gure 5). This obviously agrees with results of Leblond [4] described
before.
Non-linear effects due to the finite size �a of the perturbation are of two natures :

� a geometrical one : for a same perturbation width T , the bigger the amplitude�a is,
the more the top of the perturbation is shielded, that is the less the SIF is amplified.
This suggests that a big perturbation shall advanced lower in comparison with the
little one.

� linked to the advance law : Paris’ law is convex versus the SIF hence roughly
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Figure 4: Successive positions of the crack front in the stable case (T=a1 = 1)
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Figure 5: Successive positions of the crack front in the unstable case (T=a1 = 10)

speaking, its linearized form is lower than the non-linear one. This implies that the
advance rate is slower in the linear case, that is for a small perturbation than in the
non-linear one for a large perturbation.
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Hence the two mechanisms are antagonist so could it be of interest to compare their
relative influence.

In pratice, two specific situations are investigated : for a large amplitude �a=a1 = 1
is taken, whereas for a small one �a=a1 = 10�2. Moreover, we chose the value 1 (resp.
10) of the T=a1 ratio to illustrate the stable (resp. unstable) case.

On figures 4 and 5, the front positions of the large (resp. small) perturbations are de-
picted in dashed (resp. full) lines. The amplitude of the small one is scaled by 1=10�2 =
100 in order to make the two cases comparable. One can note that the large perturbation
front is always above the tiny one. This means that the non-linear effects of the advance
law are more important than the geometrical ones.

Brittle Fracture Propagation
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Figure 6: ”Brittle fracture” (n = 30)

Figure 6 shows the propagation path of a small width perturbation, the exponent in the
Paris’ law (1) being taken equal to 30. One can note that the SIF reaches a maxi-
mum between the top and the bottom of the perturbation so that the crack front tends
to widespread. Unfortunately, due to numerical difficulties linked to the finite size of the
meshing, one cannot go further in the calculations. It is probable that after a certain time,
the SIF reaches its maximum at the top so that the unstable case is likely to appear.

Numerical simulations of large perturbations have been done, but rapidly the top of the
perturbation becomes too sharp to allow any further calculations.
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CONCLUSION

This numerical approach, besides the only requirement of 1D meshing of the crack front,
gives us the opportunity to state a unique formulation describing both fatigue and brittle
fracture propagation. Moreover, propagation upon large distances can be simulated. This
allowed us to investigate some theoretical results about stability in the propagation paths
of a tunnel-crack with perturbed front.

In fatigue, two domains can be distinguished depending on the perturbation width :
for narrow ones, the perturbation vanishes during propagation (stable case); for large one,
the perturbation increases (unstable case). It has also be shown that the non-linear effects
increases the crack advance rate.

In brittle fracture, some further investigations are necessary to obtain satisfactory re-
sults.
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