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ABSTRACT. It has long been recognized that the fatigue growth behaviour of cracks 
having a length comparable with the material microstructure size (the so-called short 
or small cracks) is remarkably different from that of long cracks. In particular, the 
threshold condition of fatigue crack growth is seen to be correlated to the crack length 
and the material microstructure.  The well-known “Kitagawa diagram” describes the 
variation of the threshold stress intensity range against the crack length, showing the 
existence of a transition value of length beyond which the threshold of fatigue crack 
growth is governed by linear elastic fracture mechanics. In the present paper, the crack 
surface is firstly treated as a self-similar invasive fractal set (which is characterized by 
a uniform fractal dimension) and, owing to the fractional physical dimension of the 
fracture surface, the stress intensity factor is shown to be a function of the crack length. 
Consequently, the threshold stress intensity range is deduced to be a function of the 
crack length. Then the fractal dimensional increment is assumed to vary from 0 to 1 
since, in the physical reality, the fractal dimension of the crack surface may change 
with the crack length. This allows us to put forward a new interpretation of the 
Kitagawa diagram within the framework of the fractal geometry. 
 
 
INTRODUCTION 
 
During last decades, the enhanced ability to detect and measure very short cracks and a 
great interest in using fracture mechanics methods for smaller and smaller crack sizes 
have pointed out the so-called “short (small) crack” problem (e.g. see Refs [1,2] for a 
review). Such cracks are characterized by an anomalous fatigue behaviour in 
comparison with that of their long counterparts, including: crack growth rate Na d/d  
higher than what would be predicted by a long-crack curve, for a given stress intensity 
range K∆ ; often a decrease in Na d/d  with increasing K∆ ; crack growth at K∆  values 
lower than the long-crack threshold; crack growth rate strongly dependent on the 
material microstructure. 

Standard threshold data of stress intensity range are commonly determined for long 
cracks. Hence, according to the implicitly governing similitude concept of Linear 
Elastic Fracture Mechanics (LEFM), such data are crack-size independent. Frost [3] 



firstly questioned the validity of LEFM-based threshold stress intensity range in the 
region of short cracks, showing that thK∆  decreases with decreasing crack length. 
Kitagawa and Takahashi [4] later found that there exists a transition crack length below 
which thK∆  is smaller than that for long cracks, and that such a length is dependent on 
the material microstructure. The dependence of the threshold stress intensity range on 
the crack length (crack-size effect) is commonly described by the thK∆  against a  plot, 
which is known as the “Kitagawa diagram”. 

Some investigations have been carried out to interpret the Kitagawa diagram (e.g. see 
Refs [5-8]). In the present paper, the dependence of the threshold stress intensity range 
on the crack length is explained following a theoretical approach based on some fractal 
geometry concepts (e.g. see Refs [9,10]). Some applications of fractal geometry to size 
effect-related fatigue problems can be found in Refs [11-13]. A new definition of the 
stress intensity factor for self-similar fractal topologies (exploited to model crack 
surfaces) is used, and a general relationship of threshold stress intensity range thK∆  
versus crack length a  for self-affine fractal topologies is herein presented. Such a 
relationship, deduced according to multifractal concepts, offers a justification of the 
Kitagawa diagram. Some relevant experimental data [7] are analysed to show how to 
apply the theoretical approach proposed. 
 
 
KITAGAWA DIAGRAM ACCORDING TO THE ELHADDAD MODEL 

 
As is mentioned above, the breakdown of LEFM-based threshold condition for short 
cracks is well summarised by the Kitagawa diagram (Fig. 1). According to the well-
known ElHaddad model [6], the Kitagawa diagram is described by the following 
expression: 

a
a

KK th
th

0

0

1+

∆=∆       (1) 

where 0thK∆  is the crack-size independent threshold stress intensity range for long 
cracks, 0a  is an intrinsic crack length defined as follows 
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and 0thσ∆  is the fatigue limit for smooth specimens. The intrinsic crack length 0a  
ranges from 1-10 µm for very high strength steels (yield stress yσ  up to 2000 MPa) to 

100-1000 µm for very low strength steels ( yσ  as low as 200 MPa). 
Since the following relationship 
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holds for the stress range at the threshold of crack growth (Y  is a dimensionless factor 
depending on the loading and the geometry of the cracked configuration), we can obtain 
the expression below  by combining Eq.(1) and Eq.(3): 
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As is clearly shown in Eq. (4), the ElHaddad model introduces the concept of effective 
crack length which is the sum of the actual crack length and the intrinsic crack length. 
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Figure 1. Schematic representation of the Kitagawa diagram: threshold stress intensity 
range thK∆  as a function of the crack length a . 

 
 
THRESHOLD STRESS INTENSITY RANGE FOR FRACTAL CRACKS 
 
Several theoretical investigations have been carried out in the field of fracture 
mechanics by considering the fractal nature of materials (e.g. see Ref. [14] for a review). 
In Ref. [15], for instance, fractal geometry (see Ref. [9] for basic concepts) has been 
exploited to explain size effect on fracture energy, by treating a fracture surface as an 
invasive fractal set, i.e. a set with a dimension higher than that of the Euclidean domain 
where it is contained. That applies to mathematical fractals (also called self-similar 
fractals) which are characterized by a uniform fractal (monofractal) dimension. 

However, Mandelbrot [10] pointed out a non-uniform (multifractal) scaling of the 
natural fractals (also called self-affine fractals), different from the uniform one of the 
mathematical fractals. Accordingly, a transition from a fractal regime for small 
structures to a Euclidean one for structures large enough with respect to a characteristic 
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material length has been considered, and a multifractal scaling law for fracture energy 
has been proposed [16]. 
 
Self-Similar Fractal Cracks 
 
The modelling of a crack as a mathematical self-similar invasive fractal curve, such as 
the von Koch curve (e.g. see Ref. [9]), yields the definition of a renormalised (scale-
invariant) threshold stress intensity range *

thK∆  (details can be found in Refs [12,13]). 

Accordingly, the nominal stress intensity range thK∆  turns out to be a function of the 
crack length through a power law: 

2*
d

thth aKK ∆=∆      (5) 

d  being the fractal increment with respect to the Euclidean domain where the fractal set 
is contained (monofractal approach).  Note that *

thK∆  has the following physical 

dimensions: [ ] [ ] 2
3 d

LF
+− .  Equation (5) describes a straight line with slope 2/d  in the 

thK∆  against a  bilogarithmic diagram (Fig. 2). 
It can be noted that the power law of Eq. (5) is formally identical to both the 

empirical relation of Frost [3] and the theoretical law of the Murakami-Endo model [8]. 
The former assumes an exponent equal to 1/6 for a , and is based on experimental data 
related to crack lengths ranging from 100 to 20000 µm. The latter considers an exponent 
equal to 1/3, and applies to thK∆  values determined for crack lengths ranging from 5 to 
200 µm. Thus, according to the above authors, the exponent in Eq. (5) can be argued to 
vary with the crack length. 
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Figure 2. Monofractal scaling law (see Eq. (5)) in the thKa ∆−  bilogarithmic plane. 
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Self-Affine Fractal Cracks 
 
The validity of Eq. (5) is limited by the assumption of a self-similar fractal topology, 
that is to say, the fractal dimension remains uniform. This implies, for instance, that an 
infinite threshold stress intensity range would occur with increasing the crack length, 
which is obviously far from the experimental reality. Hence, in order to describe the 

thK∆  against a  relationship from small to large values of a , we may consider a 
multifractal approach. Accordingly, crack surfaces are treated as self-affine invasive 
fractal surfaces, so that their fractal dimensional increment d  is a function of a . The 
following expression is herein proposed : 
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where ∞∆ thK  is the asymptotic threshold stress intensity range for +∞→a , and 0l  is a 
characteristic length of the material microstructure. Equation (6) describes the fact that 
fractality decreases as the crack length a  increases, namely as a  becomes larger and 
larger with respect to some characteristic length of the material microstructure. As is 
shown in Fig. 3, the slope of Eq. (6) tends to 21  for +→ 0a  and to 0 for +∞→a  in 

the thK∆  against a  bilogarithmic diagram, that is, Equation (6) implicitly assumes that 

the fractal increment ranges from 1=d  for +→ 0a  to 0=d  for +∞→a . Note that 
Equation (6) is analogous to the multifractal law proposed in Ref. [16] for fracture energy. 

It can be seen that Equation (6) is formally identical to Equation (1) describing the 
Kitagawa diagram according to the ElHaddad model [6].  The comparison between such 
equations  shows  that the parameter ∞∆ thK   can be read  as  the threshold stress intensity 
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Figure 3. Multifractal scaling law (see Eq. (6)) in the thKa ∆−  bilogarithmic plane. 
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range 0thK∆  for long cracks (which is crack-size independent), and the material length 

0l   represents the intrinsic crack length 0a . 
 
 
EXPERIMENTAL APPLICATION 
 
The multifractal law of Eq. (6) is here applied to interpret thK∆  against a  results of 
some experimental tests carried out by Tanaka and coworkers [7]. The material tested 
was a ferritic and pearlitic mild steel with the carbon content of 0.20%. The grain size of 
the ferritic phase was changed by a heat treatment from 7.8 µm (Material A) into 55 µm 
(Material B). Fatigue tests were conducted on plate specimens at room temperature 
under fully reversed bending. K-decreasing tests were performed to obtain the threshold 
stress intensity range on plates containing either a centre crack, or a surface crack or a 
corner crack. The threshold condition was conventionally determined for a crack growth 
rate equal to 10-11 m/cycle. The threshold stress intensity range thK∆  was 
experimentally evaluated (7 values for Material A, 12 values for Material B) for the 
crack length ranging from 6 µm to 1383 µm. 

The best-fitting thK∆  against a  curves (see Eq. (6)) are shown in Fig. 4 together 
with the experimental data reported in Ref. [7]. The best-fitting procedure allows us to 
determine the parameters ∞∆ thK  and 0l  of the present model (Table 1). Note that the 
correlation coefficient R is approaching the unity (corresponding to a perfect 
correlation) for both materials being examined. 

 

It is self-evident that the tendency of the experimental thK∆  against a  data can be 
well described also according to ElHaddad model [6], knowing the two parameters 

0thK∆  and 0a  (see Eq. (1), and Eq. (6) with 0thth KK ∆=∆ ∞  and 00 al = ). Note that, in 

the tests by Tanaka and coworkers [7], the value of 0thK∆  was experimentally 
determined, while the value of 0a  (see Table 1) was obtained from Eq. (2) by 
considering the fatigue limit for smooth specimens ( 0thσ∆ ) computed through an 
empirical expression depending on the grain size. 

Therefore, the reason for determining the parameters ∞∆ thK  and 0l  from a fitting of 

thK∆  against a  data is to show a general way of application of the proposed 

multifractal law, without knowing a priori the physical meaning of ∞∆ thK  and 0l . Such 
a meaning is then revealed by comparing Eq. (6) with Eq. (1). In other words, Equation 
(6) does not provide a new expression for the threshold stress intensity range as a 
function of the crack length, but it only demonstrates that the relationship describing the 
Kitagawa diagram can be obtained following a non-conventional approach based on the 
(multi)fractal geometry. 
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Figure 4. Theoretical curve (see Eq. (6)) and experimental data [7] in the thKa ∆−  

bilogarithmic plane: (a) Material A (small grain size); (b) Material B (large grain size). 
 
 

Table 1. Experimental results [7] and theoretical values computed according to the 
present model (see Eq. (6)) and the ElHaddad model [6] (see Eq. (1)). 

Material Grain size 
(µm) 

0thσ∆  
(MPa) 

0thK∆  

(MPa√m) 

∞∆ thK  

(MPa√m) 
0l  

(µm) 
R  0a  

(µm) 
A 7.8 235 5.21 5.35 179 0.999 156 

B 55 163 6.20 5.24 239 0.926 461 



CONCLUSIONS 
 

Some fractal geometry concepts are exploited to describe the topology of the fracture 
surfaces. In particular, treating a crack surface as a self-similar invasive fractal set, 
which is characterized by a uniform fractal (monofractal) dimension, a renormalized 
(scale-invariant) threshold stress intensity range is firstly defined. This implies a power-
type expression between the threshold stress intensity range and the crack length. 

Then, modelling the crack surface as a self-affine invasive fractal set, which is 
characterized by a non-uniform fractal (multifractal) dimension, a general relationship 
between the threshold stress intensity range and the crack length is proposed. It is 
shown that such a relationship is formally identical to that of the ElHaddad model [6]. 
Hence, the present investigation offers a new theoretical basis within the framework of 
the fractal geometry, according to which the Kitagawa diagram can be justified. Finally, 
some relevant experimental data [7] are analysed to show how to apply the theoretical 
fractal approach proposed. 
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