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ABSTRACT. A predictor-corrector scheme capable of mixed-mode problems is 
presented to optimize the shape of 3D crack fronts within the 3D simulation of fatigue 
crack growth. It enables one to follow and/or predict crack paths as realistic as 
possible. The whole procedure is embedded in an automatic incremental crack growth 
algorithm for arbitrary three-dimensional problems with linear-elastic material 
behavior. The numerical simulation is based on the 3D dual boundary element method 
(Dual BEM) and on the optimized evaluation of very accurate stress intensity factors 
(SIFs) and T-stresses. As part of the proposed predictor-corrector scheme, 3D 
singularities along the crack front especially in the vicinity of the intersection of the 
crack front and the boundary are considered. The knowledge about these singularities 
allows the specification of crack front shapes with bounded energy release rate. 
Additionally, it is assumed that the crack front shape ensures a constant energy release 
rate along the whole crack front. A numerical example with a complex cross section is 
presented to show the efficiency of the proposed crack growth criterion. A comparison 
to recent experimental results shows good agreement. 
 
 
INTRODUCTION 
 
In fracture mechanics analyses one has to distinguish between monotonically increasing 
and cyclic loading conditions. The more important case is the cyclic one, because much 
lower loads lead to crack growth, which can be divided into three stages (retardation, 
stable fatigue crack growth and the transition to unstable crack growth). 

The stage of stable crack growth is investigated in terms of linear-elastic fracture 
mechanics. The aim is to describe this stage as realistic as possible. Then, a reliable 
validation of real or hypothetical cracks is feasible. In the present paper it is assumed, 
that a threshold value concerning the crack growth is always exceeded along the whole 
crack front leading to a completely growing crack. The opposite case, that this threshold 
value is only locally exceeded at a crack front, is experimentally investigated in [1]. 

As the crack growth is a non-linear process, an incremental procedure is required. It 
includes the three steps: a) the analysis of the state of stresses and strains, b) the 



determination of the new crack geometry and c) the update of the numerical model for the 
next increment. 

The stress analysis is performed with the 3D Dual BEM. The determination of the new 
crack geometry is based on an appropriate 3D crack growth criterion. A predictor-
corrector scheme based on the energy release rate, respectively the SIFs, is proposed to 
optimize the crack front shape and its position. This scheme can be applied to general 3D 
specimens under arbitrary loading conditions. The most important case is mode-I, as such 
conditions are often the reason for failure in industrial applications. An example 
regarding this mode will be presented to show the efficiency of the proposed predictor-
corrector scheme. Furthermore, the application of the proposed scheme to mixed-mode 
problems will be discussed. 
 
 
STRESS ANALYSIS 

 
The boundary value problem as shown in Fig. 1 is solved by the 3D dual boundary 
element method (3D Dual BEM) [2]. 
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Figure 1. Sketch of the boundary value problem. 
 
 

The cracked body 3Ω ∈ R^ is homogeneous and isotropic with linear elastic material 
behavior. Ω  is bounded by the normal boundary nΓ  and the coincident crack surfaces cΓ  
and cΓ . Dirichlet and Neumann boundary conditions are applied along the boundary Γ . 
The relevant displacement boundary integral equations (BIE) are evaluated in the 
framework of a collocation method on nΓ  and only on one crack surface. Otherwise a 
singular system matrix would occur [3]. To avoid this, the coincident crack surfaces need 
to be separated. In the present context, dual integral formulations are used [4]. Hence, the 
hypersingular traction BIE is additionally evaluated on the remaining crack surface. 

It is a special advantage of the 3D Dual BEM for the simulation of 3D crack growth, 
that this procedure can be used within a single sub region. Especially in the area of high 
stress concentrations - ahead of the crack front - no discretization is needed. 

Arbitrarily shaped 3D cracks under general load conditions can be analyzed. The 
procedure is robust and leads to very accurate results. However, the simulation of 
propagating cracks is costly, because a lot of increments are necessary to follow a crack 



path. The most time consuming step is the solution of the boundary value problem with the 
3D Dual BEM, which has to be performed in each increment. Within the stress analysis 
the solution of the linear algebraic system of equations plays the dominant role. The 
application of the DDM (Dual Discontinuity Method) [2] eliminates one crack surface 
with respect to the integration and leads to a smaller system of equations, which has to be 
solved. 

As long as the system of linear equations fits into random access memory (RAM), the 
iterative GMRES solver is used. It accelerates the stress analysis compared to a direct 
solver significantly. If there are only slight changes in the new crack front shape, the 
solution of the last increment can be chosen as the start solution of the new increment. It 
results in an additional speed-up of approximately 30%. 

But if the system of linear equations no longer fits into RAM, additional effort is 
required to still be able to use the fast iterative solver. In this case, the so-called 
multipole expansion method (MEM) [5,6] can be applied, as it becomes advantageous 
when exceeding a certain number of degrees of freedom. 
 
 
AUTOMATIC 3D CRACK GROWTH ALGORITHM 
 
The 3D crack growth algorithm consists of three steps, which are shown in Fig. 2. 
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Figure 2. Basics of the crack growth algorithm. 
 
 

First of all, fracture mechanics parameters are evaluated along the whole crack front. 
The SIFs and additionally the T-stresses are calculated from the numerical stresses in the 
crack near-field very accurately via an optimized local extrapolation method based on a 
regression analysis controlled by the minimization of the standard deviation [7]. The 
asymptotic distribution of these stresses related to a cartesian crack front coordinate 
system with an associated polar coordinate system in the ( 1 2,x x% % )-plane, cf. Fig. 2a, is 
given by: 
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for a point P on a smooth crack front [8]. The intensity of the typical square-root 
singularity is characterized by the SIFs MK  ( I,II,IIIM = ). ( )M

ijf ϕ  denote the 
corresponding angular functions while Tij denote the T-stresses. 

For every crack front node a new position is determined by the evaluation of a suitable 
crack growth criterion. It includes the determination of the kink angle and the crack 
extension. With these two quantities the shape and position of the new crack front can be 
defined. 

Next, the gap between the old and new crack front can be closed during the update of 
the numerical model via two options. If there are only small local crack extensions 
(corrector steps), the old crack front nodes are moved towards the new crack front. In 
case of significant crack extensions along the whole crack front (predictor steps) a new 
row of elements can be inserted as shown in Fig. 2c. 

Special attention is needed in case of surface breaking cracks, as two important 
aspects have to be considered. Firstly, the normal boundary Γn has to be taken into 
account during the update of the discretization. Ensuring an optimized mesh an automatic 
local re-meshing procedure is applied. Secondly, due to the possible change of 
singularities in the vicinity of the intersection of the crack front and the free surface, a 3D 
singularity analysis is necessary. 

Finally, the numerical model for the next increment is generated in a fully automatic 
way. 
 
 
3D CORNER SINGULARITIES 
 
The classical SIFs are linked to the square-root singularity. But this kind of singularity 
generally doesn't hold for non-smooth parts of the crack front, especially in the vicinity of 
the intersection of the crack front with the boundary in case of surface breaking cracks. At 
such points one has to consider 3D corner singularities. The knowledge of the present 
singularities along the crack front is one of the basic parts of the proposed predictor-
corrector scheme. 

Around the singular point O with coordinates xO ∈  Ω ⊂  R3, an ε-neighborhood Ωε  
O is 

considered. The corresponding elastic solution in the vicinity of the singular point O 
related to a spherical coordinate system, which is centered in O, is asymptotically 
expanded in the form 
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αL denote the asymptotic exponents satisfying αL > -0.5 from the elastic energy point of 
view, cf. [9], and gi

L are the corresponding angular functions. The asymptotic exponents 

are now linked to generalized intensity factors *
LK . The vicinity Ωε  

O around O is given by 

o :ε εΩ = Ω ∩ Ω  and { }3
o: :ε εΩ = ∈ − <x x xR . 



The solution of a quadratic eigenvalue problem in terms of α with the associated 
eigenvectors gi provides the asymptotical exponents αL [9]. 

The interval -0.5 < αL < 1 is considered, because the asymptotic behavior is focused 
whereas the rigid body motion modes are excluded as they are known. αL depends on the 
geometrical situation around the singular point as well as on material parameters. For 
homogenous and isotropic materials it only depends on the Poisson's ratio ν . 

For αL = 0.5 the intensity factor K*
L may correspond with one of the classical stress 

intensity factors KM. In general, one cannot distinguish between mode-I,II,III any more but 
only between symmetric and antisymmetric modes. The symmetric mode corresponds to 
mode-I and the antisymmetric modes can be either pure mode-II or pure mode-III or a 
combination of both. 
Though, αL is only different from 0.5 at some special points and if the classical SIF-
concept is used to describe the behavior in the crack-near field, there are two options. 
Firstly, a general intensity factor concept can be designed. Secondly, the classical SIF-
concept is kept and the SIFs at these special points are defined in an asymptotical sense 
[10]. Following Eq. 2 gives u ~ O(ρ αL) and therefore σ ~ O(ρ αL - 1). This means, if αL is 
greater than 0.5, KM tends to zero and for  αL < 0.5 the classical SIF KM tends to infinity. 

Hence, the exponents αL have to be known to determine the classical SIFs 
asymptotically. But this is not the only application of these 3D singularities as shown in 
[11]. Moreover, crack front elements incorporating the relevant singular exponents can be 
designed to improve corresponding numerical calculations. Concerning the simulation of 
crack propagation, it is advantageous that the angle between the crack front and the free 
surface can be determined by the assumption of αL = 0.5. A first agreement of this 
relationship in case of mode-I can be found in [11]. Detailed experimental investigations 
regarding different cross sections and crack front shapes yielding the same correlation are 
presented in [1]. In case of mixed-mode problems the crack front angle should be 
adjusted in a way that the smallest asymptotical exponent tends to 0.5. This results in a 
crack front shape with a bounded energy release rate. The coincidence to experimental 
findings including observed crack front angles is shown in [12]. 

As the crack front angle can be determined by a singularity analysis for a given crack 
configuration, it is possible to modify the geometry to get a predefined angle. This effect 
is reported in [11], where the class of square-root singularity specimens is proposed. 
 
 
PREDICTOR-CORRECTOR SCHEME 
 
The position of the new crack front during fatigue crack growth is essentially influenced 
by two parameters; the crack extension and the kink angle. So far, both parameters are 
determined by a predictor procedure, as discussed in the next subsection. Afterwards, all 
proposed corrector steps will be presented. This results in a predictor-corrector scheme 
concerning the crack extension with an implicit correction of the kink angle. 
 
 



Predictor 
For the determination of the crack extension ∆a(P) at a crack front point P, a user-defined 
incremental length ∆a0 is specified. This length is distributed along the crack front 
depending on an appropriate fracture mechanics parameter (an effective SIF or the energy 
release rate). The maximum crack extension is either assigned to a maximum or an 
average value of these parameters and is distributed linearly along the crack front. 
Alternatively, an exponential distribution based on the Paris Law is applied. But the 
shape of the crack front and therefore the resulting crack path depends on the amount of 
∆a0. Thus, corrector steps are introduced to improve the shape of the crack front. 

The kink angle ϕ (P) is determined by the maximum tangential stress (MTS)-criterion. 
This criterion provides the angle of a differential crack extension depending only on KI 
and KII. Thus, the SIF KIII is missing and only the tangent to a possibly deflecting crack 
path is described. As the crack deflection is not included a “zigzag” path around the 
smooth curved path may occur. Furthermore the crack extension is finite in the 
incremental crack growth procedure and not differential for which the angle holds. The 
missing SIF can be additionally included following the proposition in [13], that the crack 
growth angle is perpendicular to the maximum principle stress on an imaginary 
cylindrical sphere around the crack front. Including the SIF KIII for the determination of 
the crack deflection implicates actually an additional angle around the 1x% -axis. This angle 
corresponds to the mostly typical phenomenon of the formation of facets if mode-III is 
present. But this behavior is not considered, as it is not modeled yet. The consideration of 
KIII improves the kink angle but there is still a tangent described. 
 
Corrector 
Starting with mode-I conditions, the corrector steps can easily be explained. There is a 
close relationship between the crack front shape and a corresponding fracture mechanics 
parameter, e.g. KI. Based on preliminary tests, it is assumed and mostly verified that KI 
controls the crack growth and the crack front will propagate in a way that KI is constant 
along the whole crack front. For the determination of KI it is essential that the square-root 
singularity holds along the crack front, even at both ends in case of surface breaking 
cracks. Knowing the present value of the asymptotic exponent αL one has to adjust the 
angle γ between the tangent of the crack front and the negative normal vector of the free 
surface to satisfy the square-root singularity. The crack extension is performed on basis of 
the energy release rate, because it has the mostly physical meaning, with the following 
distribution 
 

 ( ) ( ) min
0

max

G P C G
a P a

G

− ⋅
∆ = ∆ . (3) 

 
The corrector C is equal to one if a corrector step and equal to zero if a predictor step 

is performed. Within an iterative procedure the practical constance of KI is ensured. The 
crack front will be locally corrected in the direction of the crack growth relatively to the 
minimum of G. This procedure can be named iterative forward predictor-corrector 



scheme. The crack grows according to the maximum energy release rate while minimizing 
the amount of newly generated crack surfaces. 

The condition of a constant KI is equivalent to the constance of G for mode-I and no 
longer sufficient for mixed-mode. In this case, constance is only claimed for G, which 
leads to the extension of the predictor-corrector scheme to mixed-mode problems. 
Additionally, it is also no longer sufficient to consider only one relevant singularity at the 
crack front intersections. Up to four different exponents may occur and it is a reasonable 
choice to use the smallest one to adjust the crack front angle ensuring a crack front with a 
bounded energy release rate. 

The correction of the kink angle is implicitly performed by considering the T-stresses 
in the calculation of the kink angle, cf. [14]. Then, this angle additionally depends on the 
Poisson’s ratio and the crack extension. As the crack extension is distributed according 
Eq. 3, the kink angle is automatically corrected following the crack deflection closely. 
 
 
NUMERICAL EXAMPLE 
 
A fatigue crack growth experiment is shown to demonstrate the efficiency of the proposed 
predictor-corrector scheme. This scheme was introduced for mixed-mode problems, but 
only mode-I will be considered. On one hand, a lot of failures in industrial applications 
are caused by this mode. On the other hand, recent well documented experimental results 
by M. Heyder are available for a 4-point bending specimen with a complex “triple”-T-
shaped cross section as shown in Fig. 3. 
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Figure 3. a) 4-point bending specimen; b) “triple”-T cross section. 
 

A quasi-elliptical corner crack is located in the center leg in half of the length of the 
specimen. The maximum force of the cyclic load was F = 3kN. The transparent material 
PMMA (E ≈  3.6 GPa, ν = 0.36) was used to be able to document the growing crack 
fronts. Starting from the initial crack front the load was subsequently decreased to F = 
1.6kN ensuring stable crack growth conditions along the whole crack front. When the 
crack approaches the rear surface, unstable crack growth occurs but the crack grows 
rapidly only a few millimeters. Afterwards, stable crack growth could be monitored once 
again. 

Firstly, the corner singularities at both ends of the crack front should be considered. In 
both cases the crack surface is perpendicular to the free surface. Ensuring a valid square-



root singularity along the whole crack front, which is assumed in the crack growth 
criterion, the crack front angle is enforced. A reliable singularity analysis yields γ = 
13.845°. As there will be no further change of the geometrical situation at both ends of the 
crack front during mode-I crack growth, the specified angle will not change either. 

Figure 4a underlines the need of corrector steps as the predictor scheme leads to a 
crack path that grows slower at the bottom and faster at the left side relatively to the 
experimental results. 

 

experimental crack fronts numerical crack fronts

s

initial crack front

s

a) b)

 
 

Figure 4. Comparison of experimental and numerical crack front shapes in case of the 
                  a) predictor and b) predictor-corrector procedure. 
 
 

In contrast, a very good agreement can be observed when applying corrector steps, cf. 
Fig. 4b. It can be seen, that the crack stops growing at the left side even if the threshold 
value is exceeded at this point while on the right hand side unstable crack growth occurs. 
The agreement of the simulated crack front shapes to the experimental ones at the end of 
the unstable phase is also remarkable. 
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