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ABSTRACT. New methods of image processing and analysis have found application in 
fractography of fatigue failures: 1. Recognition and evaluation of striation patches. A 
new definition of striation patch is proposed. Two methods of automatic striation 
analysis are explained. 2. Within textural fractography, images of fracture surfaces are 
studied as image textures - "regularly random" image structures. The mezoscopic dimensi-
onal area with SEM magnifications between macro- and microfractography (about 30 to 
500 x) is especially suitable. Fractographic information is extracted as integral parameters 
of whole images. Several methods of characterizing fractographic image textures have been 
developed: image transforms – Fourier and auto-shape, modeling the texture as a Gibbs 
random field, and extraction and analysis of fibre-similar bright objects. Image para-
meters are related to the crack growth rate (CGR) by means of multilinear regression. 
Results of application on laboratory fatigue tests of stainless steel AISI 304L are shown. 
 
 
INTRODUCTION 
 
Fractography is an irreplaceable source of information on causes and mechanisms of 
fractures in practice. The basic task of the quantitative fractography of fatigue failures is 
the fractographic reconstitution of the history of a fatigue crack, i.e., estimation of the 
dependence of the crack development (usually in the form of crack length a or of the 
cracked area) on the number N of loading cycles or blocks in the case of laboratory 
loading, or on the operational time of the structure. The main step [1] is estimation the 
course v(a) of the crack growth rate (CGR) along crack length a. Then crack growth 
process a(N) can be reconstituted by integration ∆N = ∫ da/v(a). 

 
 
 
 
 
 
 
Fig. 1  A schematic plot of the dependence of ( ) /D s v s=  on mean striation spacing s . 
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The traditional quantitative fractography is based on measuring fractographic 
features, i.e., exactly defined geometrical objects in the image. These single objects are 
identified and required characteristics are measured at each of them. In the case of 
fatigue, striation patches and/or beach lines are the most typical features, and striation 
spacing is the most valuable characteristic. Fig.1 shows the general character of material 
function D [1] , expressing the ratio between macroscopic CGR and striation spacing s . 
From a known s , CGR can be estimated as ( )v s D s= . 

The progress of computers and image analysis methods inspired the development of 
the computer aided fractography. In addition to a more effective mode of the fracto-
graphic routine, it opens up qualitatively new possibilities of the fractographic analysis.   

Within the traditional fractography, image analysis methods can be used to recognize 
striations in images of crack surfaces, and to estimate their parameters. A new 
definition of a striation patch linked closely to Fourier transformation was proposed. 
Two methods of estimating striation parameters were developed. 

Especially for the cases when striations do not exist or are not visible in the fracture 
surface, a new method was developed – textural fractography. In comparison to the 
traditional fractography, a fundamental change is in the information source: instead of a 
discrete fractographic feature, the elementary information unit is a part of the fracture 
surface as a whole.  
 
 
ANALYSIS  OF  STRIATION  PATCHES 
 
The New Definition of an Ideal Striation Patch 
Traditionally, a striation patch is understood intuitively as a system of parallel strips. 
Striation vector s (spacing and direction) is measured along a perpendicular direction, 
which, in fact, is often more or less arbitrary (Fig.2a). If the plane of projection is not 
parallel to the plane of a striation patch (or to the axis of a cylindrical striation patch), 
the angle relations are distorted, and the normal to striations in the image is different 
from the projection of the normal to striations in real space (Fig.2b). To understand the 
striation parameters unambiguously, let us define an ideal striation patch as a  system of 
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Fig. 2 Traditional and new concept of a striation patch: a - the normal to arc striations is 
ambiguous, b - perpendicularity is distorted by projection, c - vector of shifting is 
unique in the whole patch, d - direction of shifting is invariant to projection. 
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similar space arcs shifted equidistantly in the same direction [2]. Then vector of the 
shifting is the same in the whole patch (Fig.2c), and can be used to define the striation 
vector. Its projection is just the vector of the shifting of projected arcs (Fig.2d). Due to 
this, when following the above definition we are less subjective and closer to the reality. 
Of course, real striation patches are not ideal. Assuming a model of the ideal striation 
patch, we estimate parameters of the idealization of the given striation patch towards the 
model. 

Fig. 3 Example of a system of shifted arcs (a), its Fourier spectrum (b) and a system of 
straight lines with the same vector of shifting (c). 

 
 

The concept of shifting is closely related to the 2D Fourier transformation (FT). The 
spectrum of a system of straight striations contains one peak whose position determines 
the striation vector. The spectrum of a system of shifted arcs is shown in Fig.3. Its peak 
is linearly prolonged, and the shifting vector is related to its distance from the origin. 
The example of an application is shown in Fig.4. A striation patch in Al-2024 alloy has 
been scanned in three different positions. FT-based estimates of direction of striation 
vector (vector of shifting) are independent of the direction of observation.  

 
 

         
 

Fig. 4 A striation patch recorded in different tilt. FT-based estimations of the direction 
of striation vector are the same in all cases. 

 
Images usually contain several striation patches. Two methods have been developed 

for estimating striation parameters:  
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The Recognition of Striation Patches 
The method is illustrated in Fig.5 [2]. After binarization, the presence of striations is 
tested in small subareas. Then neighbouring subareas are tested to create a striation 
patch. Finally, found patches are represented by rectangles, striation vectors estimated 
and offered in a graphic form to be verified by the operator. 
 

          
a b 

          
c d 

Fig. 5 Recognition and analysis of striation patches: a - original image, b - binarization 
(filter Marr + median), c - local analysis of the presence of striations, d - joining 
rectangular areas representing striation patches, estimation the striation vectors.  

 
 

Direct Estimation of Mean Striation Parameters 
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Fig. 6 The original image, its Fourier spectrum with marked peak areas, and graphical 

representation of estimated mean striation vector.  
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Usually mean striation parameters from one area are used. They can be estimated [3] 
within one image directly from its spectrum (Fig.6). A single peak represents striation 
patches with similar striation vectors. The weight of peaks zi can be expressed so that 
the mean striation vector can be estimated as i i is s z z= ∑ ∑ . 
 
 
TEXTURAL  FRACTOGRAPHY 
 
For cases, when striations are not present or visible in the fracture surface, another 
source of information has been investigated. In the past, magnifications between the 
traditional areas of macro- and microfractography (about 30 to 500x) were not used very 
often. Under these magnifications, images do not contain geometrically strictly definable 
objects, but only complicated random structures with mainly continuous brightness 
transitions. Information contained in the fracture morphology in the corresponding 
dimensional range was left out, though – as we now know – it significantly reflects the 
crack growth rate. A suitable descriptive and analytical approach is expressed by the 
concept of the image texture, i.e., a two-dimensional random structure with a certain 
degree of ordering, which can be utilized as a source of information.  

A texture can be exactly characterized only by statistical or model parameters of 
greater areas, integral fractographic characteristics. The elementary information unit is 
optimally just one image, alternatively sections of images or joined images.  

Two types of textural characteristics have been brought to practical applicability: 
1. The texture is represented by statistical integral parameters without any respect to its 
specific geometrical structure. Good results have been obtained with transformations of 
images (Fourier [5], auto-shape [6]), and models of contingency of brightness in a pixel 
and its neighborhood (Gibbs random field [4,5]).  
2. By using methods of image processing, bright prolonged objects are extracted from 
the texture, and abstracted as fibres. They reflect sharp edges and ridges in the fracture 
surface. The texture is represented [5] by distribution of lengths and orientations of fibres. 

The second approach opens a possibility of extending the set of fractographic 
information sources (fractographic feature, integral fractographic parameter) by a new 
category: fractographic textural element. As a randomized analogy of fractographic 
feature, it could be interpreted in relation to the failure process and material structure.  

 
Setting  SEM  Magnification  
An appropriate magnification must be optimized with respect to several requirements, 
which are counteracting and a compromise must be sought. Within one image, the num-
ber of textural elements should be representative – it implies rather smaller magnifications. 
However, textural elements supposed to be the source of information should be well 
represented in the selected image discretization. CGR is increasing with the crack length, 
i.e. also within one image. The texture within one image should be approximately homoge-
neous, and CGR presentable by a constant. Within the set of images, the general character 
of all textures should be similar, so that the same type of analysis can be applied.  



Pre-Processing of Images  
removes large-scale fluctuations of mean brightness and contrast. A suitable method – 
normalization [5,6] - was derived by generalization from one-dimensional stochastic 
processes. The brightness is transformed by a moving algorithm to mean value 128 and 
standard deviation 50 (Fig.7).  

 

               
 
Fig. 7 Original and normalized image (section 600 x 450 pixels). Stainless steel AISI 

304L, SEM magnification 200x, discretization 1600x1200 pixels.       
 
Multilinear  Model  
Every image will be characterized by a feature vector – a set of numerical textural 
parameters of selected type. This set is to be related to the value of CGR. Let us have a set 
of q images with assessed crack rates vi , i=1,2,…,q, and characterized by a set of k textural 
parameters fui , u=1,2,…,k. The simplest expression of CGR as a function of image 
parameters is a multilinear model resulting into a system of regression equations  

logv c f ci u ui
u

k

k= +
=

+∑
1

1  .                                                (1) 

Parameters cu can be estimated by the least squares method. The system must be strongly 
overdetermined: the number of equations (number of images) must exceed significantly 
the number of estimated constants cu (number of image parameters +1), i.e., q>>k+1.  

Not all characteristics fu predicate the CGR. Their significance can be verified by testing 
the zero value of the estimated coefficients cu , u=1,…, k+1, by a t-test. If hypothesis H0: cu = 
0 cannot be rejected against the alternative H1: cu ≠ 0, parameter fu is to be excluded. 

Applied Methods of Textural Analysis  
Spectral analysis [5]. 2D Fourier transformation consists in decomposition of the image 
matrix into a set of harmonic planar waves with various periods and orientations. The 
set of amplitudes without respect to wave phases is called spectrum. In order to reduce 
the number of spectral characteristics, sorting of both parameters can be introduced. 
Single segments of the spectrum defined by the Cartesian product of period and direc-
tion intervals, [p,θ] ∈(pi,pi+1) x (θj,θj+1), can be characterized by mean spectrum value. 
For example, sorting of periods was defined in real distances by interval borders  p = {1, 
2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 20, 24, 30} µm, and sorting of directions was limited to 3 

0.1 mm 



classes: directions close to that of the crack growth, directions close to that of the crack 
front, and all other directions. All combinations resulted in 45 image parameters.  
 
Gibbs random field [4,5]. A simple GRF model of a texture is based on the pair 
interaction. The description of images is converted from [row index = r, column index = 
c, gray level = g] to [distance in row = r1-r2 = i, distance in column = c1-c2 = j, 
difference of gray levels = g1-g2 = d]. All pixel pairs with the same distance vector [i,j] 
create a clique. The main characteristics of an image are histogram h and potential V. 
hi,j,d is the number of interactions d in the clique [i, j], Vi,j,d expresses the significance of 
interaction d in clique [i,j]. Probability measures are derived in a way similar to statistical 
physics. Estimation of potential V requires applying computationally demanding stochas-
tic relaxation. Relative energies ei,j, expressing significance of cliques [i, j], can be taken 
for image parameters. Only those for small distance components i,j are significant. 
 
Analysis of light fibres [5]. In many cases, the most remarkable elements of textures are 
light prolonged elements with a different thickness and shape. They reflect sharp ridges 
and edges in the fracture surface, and can be abstracted as a fibre structure. New methods 
for enhancing, detecting and description of this structure were proposed. The requirement 
to analyze continuity of fibres in points of crossing or branching led to a database 
approach. From a parametric regression of fibres, many useful characteristics may be 
estimated, e.g. the joint distribution of lengths and orientations. As a set of image 
characteristics, a histogram with suitably rough classes may be taken. In the case of four 
equidistant classes for direction and six classes for length we receive 24 image parameters.  
 
Auto-shape transformation [6] is a new decomposition method whose idea is to select 
the basis just from images themselves. Images are resized to a smaller resolution, and 
divided into elementary rectangles with dimensions equal to the correlation length in the 
row and column direction. From all elementary rectangles, a basic set is selected 
according to the quality called "appeal". Then all elementary rectangles are 
approximated as linear combinations of basic ones. The set of image parameters is 
created by mean absolute values of coefficients pertinent to single basic rectangles. 
 
An Example of Results 
Five specimens of stainless steel AISI 304L used in nuclear industry were loaded by a 
constant force cycle at 20°C in air. Specimens were of various types: SEN, CCT and CT 
(3 pieces), with the same thickness 5 mm. The fatigue crack growth was recorded and 
the local CGR estimated. Crack surfaces were documented by SEM in magnification 
200 x (view area 0.6 x 0.45 mm). Images were localized in a continuous sequence in the 
middle of specimens. CGR was assigned to every image as the mean value 
corresponding to its position. Feature vectors (sets of image textural parameters) were 
estimated by different methods, and related to CGR by the multilinear regression. 
Results were similar, typical ones are shown in Fig.8. The agreement is fully satisfactory 
and parameters obtained can be applied to crack surfaces from practical service. 
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Fig. 8 Example of fractographic textural reconstitution of fatigue cracks growth (method: 

Fourier transformation). One point represents one image. a - crack rates measured 
in laboratory and estimated from image textures. b - crack growth in single 
specimens and reversal reconstitution using crack rates estimated from images. 

 
 
CONCLUSIONS 
 
Applications of the image analysis in the quantitative fractography transfer the main 
work from the operator to the computer. They can complement or substitute traditional 
methods, and open possibilities to obtain new information from fracture surfaces. 
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