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ABSTRACT. In the present paper it has been discussed the physical meaning of J-
integral when it is applied to sharply V-notched components by calculating it along a 
circular path (JV). Consider a Cartesian reference frame having the x axis parallel to 
the notch bisector, JV, for a given circular path, is proportional to the energy release 
rate of a virtual crack having length equal to the path radius and emanating from the 
tip of a V-notch. Analytical and numerical results have been performed for linear 
elastic materials. Finally, as an engineering application, fatigue analysis of welded 
joints made by using the JV  parameter has been discussed without taking into account 
the real path direction. 
 
 
INTRODUCTION  
 
It is well known that failure analyses can be performed in two-dimensional brittle 
components even by using the J-integral parameter [1]: the critical value of the applied 
load is reached when J-integral equals a critical value depending on the material. The 
most important advantage given by this approach is to overcome asymptotic analyses by 
using a line integral contour along an arbitrary path. Doing so, the relevant Stress 
Intensity Factors, KI and KII, can be calculated by FE analyses obtaining a high degree 
of accuracy, even by using course meshes. Another J-integral’s peculiarity is that it is 
possible to extend its use to non-linear situations. In fact, when the amount of the 
ligament is large compared to the specimen width, and the HRR-Stress field is 
dominant, J supplies a measure of the intensity of the entire elastoplastic stress-strain 
fields near to the crack tip. 

Real components present complex geometries having different kinds of stress 
concentrators, which include sharp V-notches (for instance, arc welding, shaft, bonded 
joints, etc.). For this reason, it could be interesting to generalise the J-integral’s use, by 
applying it to generic V-notches, to perform both notch and failure analyses. This kind 
of approach has been widely discussed in Refs [2,3]. In order to avoid confusion, the J-
integral value can be indicated as JV, when it is applied to V-notched components. The 
JV analytical expression has been previously formalised as a function of the integration 
path both for linear-elastic and elasto-plastic materials [2]. However, in particular 
situations, it is possible to obtain two path-independent integrals, named JL1 and JL2, for 
mode I and mode II, respectively, by employing an “ad hoc” adjustment of the classical 
J-integral expression [2,3]. Moreover, it is interesting to highlight that JV can be even 



applied to rounded V-notches making explicit the bridging between the actual peak 
stress and the corresponding Notch Stress Intensity Factors (NSIF) [4]. 

By using different theories [1,5], the physical meaning of J-integral can be easily 
understood in the presence of cracks. Unfortunately, its meaning has not been still 
clarified when it is applied to sharp V-shaped notches. In the present paper it will be 
addressed the problem of proposing a new physical interpretation for this parameter. 
Finally, it can be highlighted that this approach could be even used in the fracture 
mechanics field in the presence of sharp V-notches when the exact crack path direction 
is not fundamental for estimating the total fatigue life. 

 
 

ANALITICAL BACKGROUND 
 
The J-integral parameter was defined by Rice [1] as a line integral between two points, 
A and B, of a plate subjected to a two-dimensional deformation field, as: 
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where Γ is a curve surrounding the notch tip and the integral is evaluated in a counter-
clockwise sense. W is the strain-energy density, T is the traction vector defined 
according to the outward normal along Γ and u the displacement vector. If the A and B 
points are taken on the two opposite faces of a crack, J-integral gives a constant value. 
When the material behaviour can be considered as linear-elastic, under mixed mode 
loadings (mode I and mode II) J-integral assumes the following well known expression 
(the x-x axis of the Cartesian frame of reference must be parallel to the crack faces): 
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where KI and KII are the Stress Intensity Factors and E’ is equal either to the Young 
modulus, E, under plane stress or to E/(1-ν) under plane strain.  

It is also well known that J-integral represents the rate of decrease per unit thickness, 
t, of the potential energy Π with respect to the crack size [1]  
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On the other hand, when only configurational forces are accounted for, J-integral 

provides the balance around the crack tip, as soon as the free energy is taken into 
account in the configurational traction [5,6]. 



Recent results [2, 3] indicate that, under mixed mode loadings, JV calculated in a 
circular path (i.e. r1=r2 in Fig. 1a), can be expressed as follows  
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where JLi are two path independent integrals linked to the relevant NSIFs, N

iK , and to 
Williams’ eigenvalues, λi [7], while iJ  depends just on the notch opening angle, 2α. 
Table 1 summarises the aforementioned λi and iJ  values for selected 2α values. 
Note that when 2α=0, Eq. (4) coincides with Eq. (2) and the path dependence of JV from 
r disappears. 
 

Table 1. Parameter for JV calculation  
 

2α λ1 λ2 1J  2J  A1 A2 

0  0.500 0.500 1 1 - - 

π / 6  0.501 0.598 0.993 0.801 1.67 1.45 

π / 3  0.512 0.731 0.943 0.583 1.64 1.25 

π / 2  0.544 0.909 0.812 0.389 1.56 1.07 

2π /3 0.616 1.149 0.597 0.236 1.42 0.909 

3π /4 0.674 1.302 0.474 0.176 1.33 0.836 
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Figure 1.    a: integral path surrounding the notch tip; 
 b: Williams’ eigenvalues [7]; 
 c: weight function approach. 



SIF FOR CRACKS NUCLEATED FROM SHARP V- NOTCHES 
 
The SIF calculation for a crack emanating from a triangular notch has been performed 
by Hasebe and Iida [8] employing rotational mapping functions. According to Ref. [9] 
as well as to Gross and Mendelson’s definition for the NSIF parameter, the mode I SIF 
value of a crack having a length, a, and emanating from a V-notch, takes the form: 
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Note that [11], due to nature of the physical dimension of N

1K , the KI dependence 
from the crack length is different from 0.5 as in the case of non-singular stress fields in 
the neighbourhoods of the crack initiation point. 

In order to generalise Eq. (5) to mode II loadings, the weight function technique can 
be used. If the weight function is known for the actual geometry, the SIF may be 
expressed as follows: 

 
 ∫ σ=

crack
I dxwK  (6) 

 

where w is the weight function depending only on the geometry and σ is either the 
normal stress for mode I or the shear stress for mode II. The advantage of this approach 
is that stresses have been computed on the un-cracked body along the crack path. At this 
point, for the sake of simplicity, it can be considered just the case of a 2a-length crack 
in an infinite body subjected to mode I and II loadings. Approximately, SIFs for lateral 
cracks of length a in semi-infinite bodies (differing from the former case) can be 
calculated by using the Koiter’s coefficient equal to 1.1215 (for different specific 
weight functions one can see other references, see for example Ref. [9]). For small 
crack in large plates, both mode I and II weight functions can be written in the 
following form: 
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Considering that singular stress fields occur at sharp notches, the stress component 

according to Williams [7] can be expressed, in a polar coordinate system, as: 
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where βjk is a coefficient depending on the 2α notch opening angle and on the actual θ 
direction, as demonstrated in Refs [7,10] (see Fig. 1b). In the case of θ=0, 

399.02/1r =π=β=β=β θθθ . 



According to Eqs (6-8), the stress intensity factor for a crack embedded in a singular 
stress field, becomes (see Fig. 1c): 
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A closed form solution of Eq. (9) for real value of λi cannot be expressed in terms of 

an elementary function and just a numerical integration can be performed to calculate it. 
On the contrary, for integer values of λ, integral (9) can be obtained in analytic form. At 
this point, it could be convenient to numerically solve Eq. (9), and then, on the basis of 
dimensional analyses, write the SIF value as: 
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being Ai the integration parameters reported in Table 1. Analogous results were obtained 
in Ref. [11] only for mode I loadings by taking into account Albrecht-Yamada’s 
simplified approach, applied to a lateral crack emanating from a sharp notch. 

An important peculiarity of Eq. (10) is that the Stress Intensity Factor of a crack at 
the apex of a V-notch depends on its dimension a with a power exponent equal to  
(λ-1/2). Furthermore, according to Eq. (2), for any path surrounding the crack tip, the J-
integral turns out to be: 
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A BRIDGING BETWEEN JV AND SIF FOR AN EMBEDDED CRACK  
 
Up to this point, our discussion has been managed to separately see the JV application to 
a sharp V-notch without crack and the J-integral application to cracks ahead of the tip of 
V-notches. 

The similarity between Eq. (4) and Eq. (11) is obvious and suggests a correlation 
between JV and J-integral. Therefore, for a given V-notch and an arbitrary circular path 
R (Fig. 2), the ratio between JV and J of a virtual crack is constant: 
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Analysing the problem from a different point of view, JV can be considered as the 

energy release rate of a virtual crack having a length equal to the path radius R: 
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At this point, a useful correspondence may be drawn among N

iK , JL, JV and J. Under 
mixed mode loadings, for a given V-notch, JL,i is to N

iK  as JV is to J-integral of a virtual 
embedded crack along the bisector. 
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Figure 2. Frame of reference. 
 

The numerical check of Eqs (4) and (12) performed by FE method is reported in 
Table 2. The listed results are relative to the specimens showed in Fig. 3. In order to 
minimise the computational errors, using the ANSYS software it has been performed 
accurate mesh with quad 8 elements. The 2α opening angle was equal to 60° and 135°, 
respectively. Note that mode II is singular only in the former case. 
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Figure 3. Specimens used for FEAs (dimension in mm). 
 



Table 2. Numerical evaluation of JV and comparison between JV and J-integral of a 
crack performed by means of FEAs in samples having the shape sketched in Fig. 3. 

 

a/L or R/L  
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0.00924 0.999 1.09 1.31 0.0042 0.991 1.77 2.28 

0.0462 0.997 1.08 1.34 0.0209 0.998 1.76 2.09 

0.100 0.982 1.13 1.36 0.1045 1.007 1.73 2.15 
 
FATIGUE APPLICATION OF ELASTIC  ∆ ∆ ∆ ∆JV 
 
If the most of fatigue life is spent to nucleate and propagate a crack in a small structural 
volume (see Sih [12] for the crack case or Lazzarin and Zambardi for the V-notch case 
[13]), one could make the assumption that fatigue life assessments can be performed by 
controlling only the local stress field. The welded structures analysed in Ref. [14] fall in 
the aforementioned case. In fact, 50-70% of the total fatigue life of cruciform fillet-
welded having 25 mm thickness was spent to propagate a crack up to 1 mm and 80-90% 
up to 3 mm [14].  Figure 4 shows the trend of the elastic ∆JV1 against the total fatigue 
life of about 180 experimental points obtained by testing steel welded structures 
previously analyse in terms of NSIFs (for details see Ref. [15]). For these welded 
structures the fatigue crack path was perpendicular to the main plate ([16,17]) and 
mixed mode stresses were present at weld toe [15]. Here, the critical path radius Rcr was 
set equal to the unity. This is an arbitrary choice, but the discussion of the right 
definition of a path radius requires further investigations. However, if we take into 
account experimental failures at the root, as done in Refs [18,19], they fall into the 
scatter band in Fig. 4. Furthermore, if one considers the thK∆  threshold values for 
welded structural steel of about 180 MPa mm0.5, as proposed by Raday [20], the relative 
∆J falls into the scatter band at 5⋅106 cycles. 
Finally, note that, considering even the contribution due to mode II, the value of the 
total elastic ∆JV is practically coincident with that given by ∆JV1. 
 
 
CONCLUSIONS 
 

In the present paper it has been established, under mixed mode loadings, a relationship 
between the J-integral applied to V-notches (JV) and the classic J-integral. For any path 
radius R surrounding the notch tip, JV is proportional to the J-integral of a virtual 
embedded crack having a length equal to R. 

Additionally, in order to compare fatigue lives of different welded joints, a fictitious 
critical value of the path radius of 1 mm has been considered. The fatigue life of steel 
cruciform welded joints, showing failures either at the toe or at the root, fall into the 
same scatter band without taking into account the real path direction. 
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Figure 4. Fatigue strength of steel welded joints as a function of the elastic parameters 
∆JV. Scatter band related to mean values plus/minus 2 standard deviations (Rcr = 1 mm). 
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