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ABSTRACT. Modern experimental techniques provide valuable information for 
understanding fatigue phenomena such as crack closure and crack paths in complex 
stress fields.  Thermoelastic Stress Analysis is a non-contact technique that provides 
full-field stress maps from the surface of structural components by measuring the small 
temperature changes at the surface of the structure arising from cyclic loading.  The 
technique appears to have great potential in the study of crack closure since the crack 
tip stresses are inferred from the temperature changes that occur in the component.  
This means that the effective stress intensity factor range of the growing crack can be 
evaluated directly from the experimental data. The preferred method of analysis to 
derive stress intensity factors is based on Muskhelishvili’s complex potentials.  A new 
approach has been developed that not only makes it possible to calculate the mode I 
and mode II stress intensity factors but also to locate the crack tip and, consequently, to 
monitor the fatigue crack path. 
 In this paper is a description of the fundamentals of the thermoelastic stress analysis 
technique and a summary of the different approaches to the experimental evaluation of 
the SIF.  A description of the new methodology for the mathematical analysis of 
thermoelastic images for the location of the crack tip is presented. The application of 
the latest TSA developments to two important structural integrity problems is presented 
and discussed.  The first is the evaluation of the effect of residual stresses on the closure 
of a fatigue crack growing through a weld.  The second is the automatic tracking of a 
fatigue crack growing from a starter defect. The advances made in dealing with both 
these issues means that TSA likely to become an even more important tool in structural 
integrity research. 
 
 
INTRODUCTION  
 
The ability to make reliable measurements of the stresses around a crack tip is an 
essential part of understanding the nature of the fatigue process.  Both analytical models 
and numerical simulations are dependent on good quality experimental data if they are 
to provide useful information for engineers and scientists. 
 Experimental strain analysis techniques such as strain gauging, photoelasticity, moiré 
interferometry and theremoelasticity all have a place in the tool kit of the 
experimentalist.  Recent developments in infrared camera technology and new ideas on 
processing the data mean that thermoelastic stress analysis offers some particular 
advantages to those involved in research into fatigue crack propagation. 



 

 This paper starts with a description of the fundamentals of the thermoelastic 
technique and the different approaches used for the experimental evaluation of stress 
intensity factors from thermoelastic data.  A description of a new methodology for the 
mathematical analysis of thermoelastic images for the location of the crack tip is also 
given.  The technique was used to study the growth of a fatigue crack in a ferritic steel 
weld.  The equipment used for testing and the experimental work conducted is 
described.  Finally, some results showing that the crack path could be located and the 
effective stress intensity factor of the growing crack could be determined. 
 
 
OVERVIEW OF EXPERIMENTAL APPROACHES TO FRACTURE 
MECHANICS 
 
The accurate determination of the stress intensity factor of a crack in an engineering 
component is not a straightforward process.  In fatigue tests on specimens of simple 
geometry it is not uncommon to use the compliance method, in which a remote 
measurement of strain is used to monitor the change in specimen compliance from 
which the stress intensity factor is deduced.  This approach is not readily applicable to a 
more complex geometry, and optical techniques based on a field of data from around 
the crack provide a valuable alternative.   
 Many methods of evaluating the stress intensity factor from measurements of the 
strain field around the crack tip have developed over the years.  There is essentially at 
least one method to accompany each technique of experimental stress analysis.  Each 
technique has its champions who have developed, refined and validated the methods by 
comparison to analytical and, or numerical results.  The choice available to the engineer 
or scientist who requires a means of measuring the stress intensity factor is large and 
there are few works in the open literature to help make the decision on which technique 
to use in a particular situation.  Two that do exist are by Sanford [1], who provided a 
useful overview of the full-field optical techniques, and by Patterson and Olden [2], 
who conducted a study to make direct comparisons between competing optical strain 
analysis techniques. 
 
 
Principles of Determining Fracture Mechanics Parameters from Experimental Data 
 
The stress field around a crack tip can be described by the set of linear elastic field 
equations [3] in which the stress intensity factors KI, KII, and KIII are parameters that 
characterise the field.  The evaluation of the stress intensity factors from experimental 
data involves solving these equations using measurements to provide boundary 
conditions.  The most commonly used form of the stress field equations can be derived 
using Westergaard’s [4] approach and by making a first order approximation gives: 
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where (r, θ) are the polar co-ordinates centred on the crack tip with the direction of 
crack growth being θ=0.  Additional terms can be added to these equations to account 
for mode II and III displacements, which in the case of the x-direction components of 
stress are: 
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 There are corresponding expressions for the y-direction components of stress that are 
omitted here in the interests of brevity.  The assumption of pure mode I displacements 
allows only Eq. 1 to be considered so that the only unknown KI, can be solved using 
data from a measurement at a single point.   
 A better representation of the stress field is obtained by taking measurements along a 
selected line, such as θ=π/2, which allows mode II displacements to be considered.  
Such methods have been developed for photoelasticity [5], moiré interferometry [6] and 
thermoelasticity [7].   
 Finally, the most sophisticated approach is to use the full form of the stress field 
equations and to fit the three-dimensional surface that they describe in the stress-space 
(σ-x-y) domain to the one defined by a large number of measurements.  Sanford and 
Dally [8] pioneered this method, known as the multi-point over-deterministic method 
(MPODM), in photoelasticity and variants have been developed for caustics [9], moiré 
interferometry [10], and thermoelasticity [11]. 
 
Thermoelasticity 
 
When a body is subject to cyclic elastic stresses, it experiences a cyclic variation in 
temperature that is out-of-phase with the variation in stress.  These temperature changes 
can be measured with a sensitive infrared detector and the signal from the detector is 
proportional to the sum of the principal stresses.  The thermoelastic effect is a reversible 
conversion between mechanical and thermal energy, since the temperature excursion 
will revert when the load is withdrawn.  However, this energy conversion is only 
reversible if the elastic range of the material is not exceeded and there is no significant 



 

heat transport during the loading and unloading.  If reversible conditions are achieved 
and the frequency is high enough to ensure adiabatic conditions, the temperature 
changes can be related to the sum of principal stresses according to the following 
expression: 
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Where ∆T is the temperature variation due to the thermoelastic effect, α is the 
coefficient of thermal expansion, T is the absolute temperature of the material, ρ is the 
density, Cp is the specific heat at constant pressure and σ1 and σ2 are principal stresses. 
 The common practice in thermoelasticity is to measure ∆T by differential infrared 
thermal cameras, whose sensitivity and resolution are suitable for the very small the 
temperature changes induced by the thermoelastic effect (just a few mK).  The principle 
of these cameras is based on the detection of the changes in radiant photon emittance 
induced by the changes in temperature.  Consequently, the thermal signal obtained is 
proportional to the thermal emittance from the specimen surface and can be directly 
related to the sum of principal stresses according to the following expression: 
 

 ( ) AS=+∆ 21 σσ  (4) 
 
when the coefficient of thermal expansion and the modulus of elasticity are independent 
of temperature, where A is the calibration constant and S is the thermoelastic signal.  
The calibration constant depends on the material being tested and the sensor properties.  
 Stanley and Chan [7] proposed a method for determining stress intensity factors 
using data obtained from a raster scan of a component by a single detector.  Substitution 
for any point (r, θ) of Westergaard’s equations (Eqs. 1 and 2) into Eq. 4 leads to: 
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For the case of a pure mode I crack, KII=0 and letting y=r sin θ  Eq. 5 becomes: 
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Along a line parallel to the crack (y=constant) the maximum signal, Smax occurs when 
θ = π /3, hence 
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In practice S is plotted against x for a large number of y values in order to obtain Smax.  
The stress intensity factor is then obtained from the gradient of a graph of y against 
1/Smax

2
  using the following expression: 
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 A similar procedure can be followed for pure mode II cracks except that KI=0 in 
Eq. 5.  Mixed mode loading is a little more complicated since a series of parallel plots 
of the signal are required on each side of the crack.  For each side of the crack a plot of 
y against 1/Smax

2
  is produced and the pair of gradients is used to solve simultaneous 

equations in KI and KII.  This method was used by Pang [12] to study interacting 
coplanar part-through cracks and by Leaity and Smith [13] to examine the relationship 
between measured, applied and effective ∆K.   
 In 1993 Stanley and Dulieu-Smith [14] evaluated the method for determining mixed 
mode stress intensity factors and concluded that the accuracy was moderate and the 
repeatability was poor.  In the same paper, Stanley and Dulieu Smith developed another 
procedure based on the fact that isopachic contours in the crack tip region normally take 
the shape of a cardioid curve.  By studying the orientation and shape of the cardioid 
they were able to estimate the SIF directly from thermoelastic data.  Lesniak [15] also 
developed a method that operated by fitting a mathematical model based on Airy’s 
functions to a set of thermoelastic data collected from a region surrounding the crack tip 
using a non-linear least squares method.  Lin et al. [16] developed a methodology for 
the SIF calculation on composites materials based on a J-integral approach. 
 Tomlinson et al. [17] adapted the MPODM based on Muskhelishvili’s approach from 
photoelasticity to thermoelasticity and achieved a better level of accuracy than had been 
observed using earlier methods.  For this method, Eq. 6 can be re-written as 
 

 ( ) ( )( ) AShi −+∆= ςφςφ2    (9) 
 
which was solved using a Newton-Raphson iterative method. 
 In all the previous methodologies the crack tip was either not considered in the SIF 
calculation, such is the case of Stanley and Chan’s approach, or it had to be introduced 
manually.  This constitutes a major source of error and uncertainty since data close to 
the crack tip are blurred due to the lack of adiabatic conditions.  There are two 
phenomena that lead to the lack of adiabaticity near the crack tip region, one is the heat 
generation due to plastic work and the other is the presence of high stress gradients.  In 
these conditions the direct observation of the crack tip from thermoelastic data becomes 
difficult.  Nevertheless, work has been conducted trying to develop a methodology for 
the crack tip location based on the phase map [18, 19]. 
 A new algorithm [19, 20], based on the work of Tomlinson et al. [17], has been 
developed to include the crack tip position in the K-calculation.  The procedure is to fit 



 

the experimental thermoelastic data collected at the crack tip region to a mathematical 
expression describing the distribution of the sum of principal stresses at the crack tip.  
The mathematical model is based on Muskhelishvili’s approach [21], where the in-plane 
stresses are described by two analytical functions of a complex variable.  Moreover, the 
stress equations are expressed as Fourier series in complex form where the coefficients 
of each term are complex variables that allow different states to be modelled.  An initial 
estimation for the crack tip location is required to start the calculation of the SIF from 
thermoelastic images.  This initial estimate is taken from the phase information of the 
thermoelastic data.  The algorithm then searches for the crack tip location that 
minimizes the error for the fitting expression.  The numerical method employed in the 
optimisation process is based on the Down-Hill Simplex method.  This numerical 
approach is more robust than other methods since it is not based on the derivative of an 
error function. 
 This new methodology makes it possible to include the crack tip location as a 
variable to be optimised into the fitting process.  As a result, the crack tip location 
obtained from each processed image can be employed to monitor the fatigue crack path. 
 
 
APPLICATION OF TSA TO A FATIGUE CRACK IN A WELD 
 
In thermoelasticity, the fact that the crack tip stresses are derived from the thermal 
response of the specimen due to cyclic loading means that it is the effective stress 
intensity factor range that is derived.  In principle, therefore, one should be able to 
measure crack closure using TSA.  An experimental programme was set up to test this 
hypothesis and also to determine whether the new computer algorithm developed for the 
SIF calculation could be employed as a tool to monitor the fatigue crack path from the 
calculated crack tip coordinates. 
 For the experiments reported in this paper a Deltatherm 1550 system from Stress 
Photonics Inc. was employed.  This is based around an In-Sb infrared starring array 
detector that makes possible to collect data simultaneously from 320 by 256 pixels 
window.  The digital signal processing considerably reduces the data acquisition time to 
just a few seconds, ensuring that during the data collection period the crack does not 
grow.  Moreover, this system makes it possible to achieve a maximum spatial resolution 
of 25 µm.  
 The test specimens were manufactured from two BS 1501 490 LT50 ferritic steel 
plates welded together along their edges.  The welding was performed by a multipass 
submerged arc process using an asymmetric double V preparation.  The welded plate 
was then rewelded to simulate the site repair of a central root defect in the original weld.  
This involved grinding out from the narrower side of the weld to a depth of 17 mm and 
rewelding with a lower heat input.  Neither the original weld nor the repair weld were 
subjected to any post-weld heat treatment.  The mechanical properties of the steel and a 
complete description of the specimen manufacture are detailed in reference [22].  The 
fatigue specimens for the repair welds were single edge notched tensile bars with the 
weld in the central part and a 4 mm spark eroded notch in the deeper side of the weld, as 



 

shown in Fig. 1.  One specimen was heat treated after manufacture to minimise the 
welding residual stresses. 
 

 
Figure 1. a) Test specimen.  b) Detail of the notch. 

 
 
 The specimens were prepared by spraying the front surface with a matt-black paint 
(RS type 496-782) to increase the surface emissivity.  Two rosette strain gauges (Tokyo 
Sokki Kenkyujo Co., 2 mm, 120 ± 0.5 Ω) were bonded on the rear face for calibration 
purposes.  One was at the crack line and the other one far away from the crack to avoid 
the influence of high stress gradients. 

Test specimens were installed in an ESH servohydraulic machine with a maximum 
load range of 100 kN using an assembly consisting of two grips and two pins to ensure 
pure axial loading.  Constant amplitude tensile loads were applied along the longitudinal 
axis at a frequency of 12 Hz.  Fatigue experiments were conducted at R-ratios from 0.1 
to 0.6. 
 During the different fatigue tests performed, thermoelastic images were captured 
whilst the fatigue cracks grew.  An example of the images is shown in Fig. 2.  
Simultaneously, the crack length was monitored from the rear side of the specimen 
using a vernier microscope.  Finally, thermoelastic images were processed to locate the 
crack tip and evaluate the mode I and mode II stress intensity factor ranges. 
 
 

 
Figure 2. Thermoelastic images captured during a fatigue test, a) 311,520 cycles (crack 

length 6.1 mm), b) 413,320 cycles (8.0 mm), c) 506,327 cycles (17.4 mm) and d) 
534,140 cycles (32.9 mm). 
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DISCUSSION OF THE RESULTS 
 
The stress intensity factors determined experimentally are plotted against crack length 
in Fig. 3 for the stress relieved and repair welded specimens, both tested at a load ratio 
of 0.1.  The continuous line represents the mode I SIF range calculated from the applied 
load range [23], while the points correspond to the mode I SIF range obtained using 
TSA.  Mode II data are not presented here since, as in previous work [18-20], the ∆KII 
values inferred from TSA data were almost zero because the tests were set up to be 
under pure mode I conditions. 
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Figure 3. Comparison of mode I stress intensity factor range versus crack length data for 

repair welded and stress relieved specimens using TSA. 
 
 
 It is clear that the the TSA technique is picking up the effective stress intensity factor 
range of the growing crack by the substantial difference between the stress relieved and 
repair welded specimens.  The repair welded specimen contains large tensile residual 
stresses over the first 10 mm of the specimen, changing to large compressive stresses 
from 10 mm through the centre of the plate [22].  This combined with the load R ratio 
means that the effective stress intensity factor range would be expected to be much 
lower than the theoretical value. 



 

 The effective stress intensity factor range of the stress relieved specimen deviates 
slightly from the expected values beyond a length of 14 mm.  It is not clear whether this 
is a closure effect or a shortcoming in the stress intensity calibration for this geometry. 
 In Fig. 4 are shown the data for the repair welded specimens tested over a range of 
load ratios.  Again, the ability of the TSA technique to measure effective stress intensity 
factor ranges is clearly shown.  A reduction in closure is apparent as the mean load is 
increased.  However, even at R=0.6 the experimental data deviate from the expected 
values at crack lengths beyond 14 mm. 
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Figure 4. Influence of mean load on mode I stress intensity factor ranges versus crack 
length results for repair welded specimens using TSA. 

 
 
 The result of locating the crack tip in the thermoelastic images is shown in Fig. 5. 
The precision of the technique can be clearly seen.  The ease and accuracy with which 
the crack tip can be located means that TSA has great potential in the study of crack 
growth in complex structures with complex stress fields. 
 The ability to locate the crack tip automatically makes the measurement of the 
fatigue crack growth rate much easier.  Growth data for the repair weld is plotted 
against the effective stress intensity factor range in Fig. 6. 
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Figure 5. Fatigue crack path inferred by processing thermoelastic images captured 
during a fatigue test performed at R = 0.1 
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Figure 6. Fatigue crack growth rate against the effective ∆K range for fatigue tests 
conducted at different R-ratios using TSA. 



 

CONCLUSIONS 
 
In the present paper, thermoelastic stress analysis has been presented as technique with 
an enormous potential in the study of different fatigue crack growth mechanisms.  The 
technique has been successfully employed in the experimental evaluation of the fatigue 
crack path from thermoelastic images.  Moreover the technique seems to be sensitive to 
the crack closure mechanisms, since changes in the ∆K are observed when the R-ratio 
changes or when the specimen is stress relieved.  However, more work is being 
conducted to validate the experimental results against conventional compliance 
methods. 
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