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ABSTRACT. The fatigue crack propagation behavior from a pre-crack under cyclic 
torsion combined with static or cyclic axial loading was predicted on the basis of the 
maximum tangential stress criterion. The prediction was compared with the 
experimental results obtained for thin-walled tubular specimens made of a medium 
carbon steel. The direction of fatigue crack propagation follows the direction of the 
maximum of the total range of the tangential stress, ∆σθ max, near the crack tip and then 
gradually changes to the direction perpendicular to the maximum of the total range of 
the principal nominal stress. The mode II stress intensity factor range quickly gets close 
to zero after a small amount of crack extension. The propagation rate was faster than 
the uniaxial data as cracks extended a long distance. 
 
 
INTRODUCTION 
 
Fatigue fracture of several engineering components such as transmission shafts, pipes 
and suspension coil springs occurs under combined torsional and axial loading. For 
damage tolerance design, the direction as well as the rate of crack propagation should be 
predicted from loading conditions and material inhomogeneities. In the present paper, 
the predictions of fatigue crack propagation direction and rate from a pre-crack were 
performed on an isolated crack under cyclic shear combined with static or cyclic tension, 
and compared with the experimental data on crack propagation from a pre-crack in 
thin-walled tubular specimens made of a medium-carbon steel subjected to cyclic 
torsion combined with static or cyclic tension [1]. 
 
 
PROCEDURE OF PREDICTION 
 
Analytical Model and Fatigue Conditions 
An infinite plate with a pre-crack under tensile and shear stresses was analyzed as 
shown in Fig. 1. The total length of a pre-crack was 1 mm. The origin of the coordinates 
was taken at the center of the pre-crack and the angle of crack extension was measured 
counter clockwise with respect to the horizontal (circumferential) direction (see Fig. 1). 
The curvature effect of thin-walled tubes on the stress intensity factor (SIF) was not 
taken into account in the analysis. 

The direction of fatigue crack propagation was predicted by the maximum tangential 



stress criterion. The SIF value was computed by using the two-dimensional body force 
method (BFM). The predictions of the crack propagation path and rate were compared 
with the experimental results of pre-cracked thin-walled tubular specimens made of a 
medium carbon steel (JIS S45C) subjected to cyclic torsion combined with static or 
cyclic tension. The chemical compositions of the material were as follows (mass.%) : 
C0.43, Si0.19, Mn0.81, P0.022, Cu0.01, Ni0.02, Cr0.14. The mechanical properties of 
the material was as follows : the yield strength was 319 MPa, the tensile strength was 
583 MPa, Young’s modulus was 216 GPa, and Poisson’s ratio was 0.279. 

The fatigue test conditions are four cases. The stress ratio of cyclic torsion is R=-1 
for all cases. A static axial stress is superposed on cyclic torsion in cases B and C. For 
case D, cyclic axial loading is superposed in-phase with cyclic torsion. 
 
Maximum Tangential Stress Criterion 
Three versions of the maximum tangential stress criterion were used for predictions. 
Criterion I: ∆σ∆σ∆σ∆σθ θ θ θ max criterion 
∆σθ max criterion assumes the direction of crack extension coincident with the direction 
perpendicular to the maximum of the total range of the tangential stress including the 
negative stress at the crack tip. Under cyclic torsion with superposed static and cyclic 
axial loading, the maximum SIF values for mode I and II, KI max and KII max, are given as 
the sum of those of static components, KIs and KIIs, and of cyclic components, KIa and 
KIIa, as follows: 

I max Is IaK K K= +  (1) 
 II max IIs IIaK K K= +  (2) 

The tangential stress σ +θ  near the crack tip at the maximum load is defined as 
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where r and θ  are the local coordinates near the crack tip.  When the contact of crack 
faces is neglected, the tangential σ −θ -at the minimum load is 
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The range of the tangential stress, ∆σθ , can be written as follows : 
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where I Ia2K K∆ =  and II IIa2K K∆ = . The direction of the maximum tangential stress 
is given by 

( )I IIsin 3cos 1 0K K∆ θ ∆ θ+ − =  (6) 



 
 

Figure 1. BFM model for crack propagation in infinite plate under tensile and shear stress. 
 
 
Criterion II: ∆σ ∆σ ∆σ ∆σ +θθθθ max criterion 
For fatigue crack propagation, only the tensile part of the cyclic stress can be 
effective. ∆σ +

θ  max criterion assumes the direction of crack propagation coincident with 
the direction perpendicular to the maximum of the positive range of the tangential stress 
at the crack tip. By using the notations of Eqs (3) and (4), ∆σ +θ  can be written as 
 

  max( , 0 )θ θ θ∆σ σ σ+ + −= −  (7) 

The crack propagation direction is assumed to be perpendicular to the direction of the 
maximum of ∆σ +θ . 
 
Criterion III: ∆σ∆σ∆σ∆σ *θ θ θ θ max criterion  
Under reverse loading, crack surfaces may come into contact with each other. When 
crack-face contact takes place, the SIF value at the minimum load is different from the 
nominal value calculated from the applied load. By taking into account of crack-face 
contact, the minimum value of SIF was calculated by BFM and is denoted by K*

min. The 
range of SIF is expressed by  
 * *

max minK K K∆ = −  (8) 
The crack tip was closed under the minimum load for all cases of the experiments. The 
mode I component K*

I min is zero, so ∆K*
I = KI max. On the other hand, the mode II 

component K*
II min is not zero. The range of the tangential stress and the crack direction 

are calculated by substituting  ∆K*
I and ∆K*

II for ∆KI and ∆KII in Eqs (5) and (6), 
respectively. 



 
Crack Propagation Rate 
The relation between the fatigue crack propagtion rate, da/dN (m/cycle), and the 
maximum stress intensity factor, KI max (MPa), of the experimental material was reported 
by Zhang et al. [2] for the case of the stress ratio R=-1. The crack propagation law is 
expressed as 
 I max/ ( )mda dN C K=  (9) 

where C = 1.76�10-12 and m = 3.69. The threshold value is KImaxth = 5.26 MPa m . 
The maximum stress intensity factor, kImax, for a small kink of the main crack is equal to 
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where θ is the angle of crack, and KI and KII are the maximum SIF values for the main 
crack. By substituting kImax for KI max  in Eq. (9), the crack propagation rate can be 
obtained.  

In the simulation of crack propagation, the increment of crack length for one step is 
determined by  

 ( / )×a da dN N∆ =  (11) 
where N =10000 cycle. 
 
 
COMPARISON WITH EXPERIMENTAL RESULTS 
 
Crack Propagation Path and Angle 
The crack propagation path was traced in SEM micrographs in order to make a 
comparison with the predicted path. Figure 2 shows the traced paths and predicted paths 
for four cases. In prediction, the ∆σθ max and ∆σ +θ max criteria yield the identical path for 
case A, while ∆σ *

θ max criterion gives a slightly different path.  For cases B and C, the 
crack paths predicted by the three criteria are all different. For case D, the crack paths 
predicted by the three criteria are nearly identical. The crack paths predicted by ∆σ*

θ max 
criterion for case A, B, and C are slightly different from those by ∆σθ max criterion 
because of the existence of ∆Κ∗

ΙΙ value. The crack propagation path predicted by    
∆σ *

θ max criterion is the closest to the experimental results, although there is a slight 
difference in the initial stage of crack extension from a pre-crack. 

Since the crack propagation path is zigzag under the influence of the material 
microstructure, the crack path was approximated by a curve of the second order and the 
angle was measured for the approximated crack path. Figure 3 shows the change of the 
crack propagation angle with crack extension. The difference of the crack propagation 
angles predicted by ∆σθ max and ∆σ *θ max criteria becomes minimal as the crack extends. 



 

Figure 2. Crack path outline and the predicted propagation path. 
 
Only for cases B and C, the prediction based on ∆σ +

θ max criterion is much different 
from that based on ∆σθ max and ∆σ *

θ max criteria. It should be noted that ∆σθ max and  
∆σ *

θ max criteria give a better prediction of the crack propagation angle than ∆σ +
θ max 

criterion.  At short lengths of crack extension up to about 0.2 mm, the experimental 
angle is smaller than the predicted angles based on ∆σθ max and ∆σ *

θ max criteria. This 
difference may come from the difference of the crack front shape within the specimen 
thickness. 



 

Figure 3. Fatigue crack propagation direction. 
 
 
Stress Intensity Factor 
The SIF value for kinked cracks was calculated by using BFM. The calculation was 
performed for predicted and experimentally-traced cracks under the plane stress 
condition. For the case of combination of torsional and tensile loadings, the SIF value 
was obtained as the sum of two loadings. Under a positive shear stress, the crack kinks 
at the upper right and lower left are closed (see Fig. 1 or 2), so only crack kinks at the 

 



upper left and lower right are modeled in calculation. On the other hand, under a 
negative shear stress, only crack kinks at the upper left and lower right are modeled. 
The number of division of a pre-crack is 100 and that for extended kinks is 10.  

Figure 4 shows the maximum SIF values for experimentally-traced cracks and 
predicted cracks by ∆σ θ max and ∆σ *θ max, where the maximum SIF values for the upper 
right and lower left kinks take place at the positive shear stress, and those for the upper 
left and lower right kinks at the negative shear stress. For case A, the mode II SIF 
values quickly get close to zero as the crack extends, while the mode I SIF is a 
monotonically increasing function. For case B, the mode II SIF is not reduced to zero 
even at long crack extensions. The mode II components are induced mainly by a static 
tensile stress.  

Figure 5 shows the change of the range of SIF values for case B. The ∆ΚΙ and 
∆Κ∗

Ι values increase monotonically with crack extension. The ranges of mode II SIF, 
∆ΚΙΙ and ∆Κ∗

ΙΙ are reduced to zero as cracks extend. While the prediction gives zero to 
∆ΚΙΙ and ∆Κ∗

ΙΙ just after crack extension, the experimental results show a gradual 
reduction of the mode II component. When the crack length is longer than about 0.2 mm, 
the ∆ΚΙΙ value is nearly zero in the experimentally-traced crack paths. Therefore, it can 
be said that the direction of crack path follows the direction in which the cyclic 
component of mode II SIF is zero. 

 
 

Figure 4. Change of maximum stress intensity factor with crack length. 
 



Figure 5. Change of stress intensity factor range with crack extension (Case B). 
 

Figure 6. Relation between crack propagation rate and maximum stress intensity factor. 



Crack Propagation Rate 
The relation between the rate of fatigue crack propagation, dc/dN, and the maximum 
value of mode I SIF value, KImax, determined in the previous section from 
experimentally-traced paths is shown in Figure 6, where the data of the relation for long 
cracks under uniaxial loading are also shown with the open circles. For case A, the 
propagation rate decreases in the initaial stage and then increases with crack extension. 
A similar tendency is seen for cases B and C. As the crack length gets longer, the crack 
propagation rate becomes higher than the uniaxial data as typically seen for case B. For 
case D, there is no dip in the crack propagation behavior. The crack propagation rate is 
much higher than the uniaxial data.   
   The initial dip of the crack propagation behavior is caused by the development crack 
closure, and will be studied in the future. Higher propagation rates above the uniaxial 
data observed in cases B and D result from the excessive plasticity due to negative 
non-singular T stress. The J integral approach was proved to be an appropriate 
parameter for these cases [3].  
 
 
CONCLUSIONS 
 
The predictions of the crack propagation path and rate based on the maximum tangential 
stress criterion were compared with the previous fatigue tests of crack propagation from 
a pre-crack in thin-walled tubular specimens made of a medium-carbon steel subjected 
cyclic torsion with and without superposed static and cyclic axial loading.  The results 
were summarized as follows: 
(1) Fatigue cracks propagate in the direction of the maximum of the total range of the 
tangential stress,∆σθ max , near the crack tip and then gradually changes to the direction 
perpendicular to the maximum of the total range of the principal nominal stress. 
(2) The stress intensity factor of a kink crack from a pre-crack or a main carck is 
calculated by using BFM. The mode II stress intensity factor range ∆KII quickly gets 
close to zero after small amount of crack extension.  
(3) The crack propagation rate decreases first and then increases with crack extension. 
This dip of the rack propagation behavior is caused by the development of crack closure 
with crack extension. 
(4) As cracks extend, the propagation rate is faster than the uniaxial data when 
compared at the same stress intensity range. The negative nonsingular stress induces 
excessive plasticity ahead of the fatigue crack tip, and then accelerates fatigue crack 
propagation. 
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