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ABSTRACT. The availability of analytical expressions is often desirable in fatigue crack 
initiation and propagation analyses. In the present paper, approximate analytical 
expressions capable to describe the overall distribution of the maximum principal stress 
in notched bodies subjected to bending are presented. The formulas reported here 
represent an extension of an analytical complex function approach already presented in 
the literature and suitable for describing highly stressed zones surrounding the notch 
tip. Such an extension, obtained by simply imposing global equilibrium conditions, 
enables us to increase the range of validity of the principal stress expression, from the 
notch tip to the entire ligament width. The accuracy of the new expressions is tested 
against finite element results showing a good agreement. 
 
 
INTRODUCTION 
 
It is well known that  fatigue cracks initiate and propagate in highly stressed regions due 
to the presence of notches or material defects that cause more or less localised 
perturbations of the stress fields. Knowledge of concentration factors and stress 
distributions in the neighbourhood of the geometrical discontinuities is obviously very 
important for engineers when their prime concern is the fatigue design or the fatigue 
crack growth analysis.  

Fracture analyses are carried out by using different criteria, mainly dependent on 
notch acuity, material behaviour and load history. When plasticity is absent (or it has a 
negligible influence) and the notch tip radius is below some critical value, the brittle 
failure and the high cycle fatigue failure are no longer controlled by the stress peak 
value but rather by the stress fields present in the highly stressed zones. The modeling 
of the microcracking process is generally avoided by introducing a small equivalent 
crack, by averaging the elastic stress field around the notch tip or by using stresses or 
strain energy computed at some finite distance from the point of singularity. Under high 
cycle fatigue, not only the crack initiation phase but also the early crack propagation 
phase can be predicted on the basis of the stress distributions evaluated on the 
uncracked body (according to Bueckner’s superposition principle). 



 

Exact analytical solutions of the stress distributions due to a notch exist only in a 
small number of cases: the analyses made by Airy [1], Kirsh [2] and Inglis [3] about 
circular and elliptical holes represent the main contributions in the case of notches on 
infinite plane. Other formulations reported later by Howland [4], Knight [5] and Ling 
[6-7] enable us to calculate exact stress fields in finite size strips weakened by 
analogous geometrical features. 

Today, numerical methods allow us to analyse stress distributions independently 
from the complexity of the notched component. On the other hand, numerical 
techniques lead to a typical sparse data output which is much less manageable than 
analytical formulations and, moreover, it makes not easy the understanding of the role 
played by all the geometrical parameters involved. As a result, researchers often adopt 
numeric approaches only to derive stress field intensity, while stress distributions are 
estimated on the basis of approximate analytical solutions [8-21]. Among these 
solutions, the Creager–Paris’ formulation [9], is widely utilised in the common practice 
not only for “blunt cracks” but also for describing local stress fields in parabolic, 
elliptic, U and narrow V-shaped notches, at least when the elastic peak stress is 
localised at the notch tip. This happens because stress distributions in the close 
neighbourhood of the tip radius ρ mainly depend on the notch tip radius and only 
“slightly” depend on the global geometry of the notch. Otherwise, in the presence of 
mixed-load conditions, Creager-Paris’ solution should be applied only to slim parabolic 
notches [22], since the peak stress value is very sensitive to the local curvature radius. 

In the past, several researchers suggested different formulas for the local stress fields,  
often combining an analytical frame and a best-fitting of numerical data. Approximate 
equations valid for notches with high values of Kt were developed by Weiss [8] on the 
basis of Neuber’s solution [23], subsequently modified also by Chen [10]. In the case of 
low values of Kt, Usami [11] presented an extension of Airy’s expressions, while 
Kujawski [13] was the first to re-arrange the Creager-Paris formulation by introducing a 
correction factor f, this factor being dependent on the value of the theoretical stress 
concentration factor Kt. 

Glinka [24] strongly contributed to the diffusion of Creager-Paris’ formulas for mode 
I loading by using them to formalise the Equivalent Strain Energy density criterion. 
Afterwards Glinka and Newport [12] gave some polynomial expressions, different for 
blunt and severe notches, suitable for engineering calculations. They also suggested a 
correction useful for the analysis of notched components subjected to bending.  

An accurate formulation valid for the maximum principal stress is also due to Xu, 
Thompson and Topper [16], who were able to combine theoretical results valid for a 
parabolic notch in an infinite plate [25] and features of the stress fields in finite size 
components under Mode I loading. Xu et al. adopted the stress concentration factor Kt 
and the root radius ρ as main parameters for infinite bodies, and then introduced the 
notch depth to ligament width ratio as an additional parameter suitable for analysing 
finite size effect. The influence of the different parameters on the maximum principal 
stress distribution was determined by a best fitting of finite element data.  

Most of these formulations were carefully checked by Shin et al. [14, 15] with the 
aim to clarify their accuracy and range of validity. Afterwards Kujawski and Shin [18] 



 

combined the aforementioned solutions due to Chen and Kujawski into a unique 
formulation able to yield a better approximation for notches having a very different 
degree of acuity. 

Recently Filippi et al. [21] revisited a previous approximate solution [17] based on 
the Kolosoff-Muskhelishvili [26-27] complex potential method, with the aim to increase 
its degree of accuracy. Considering U, V and elliptic notches in plates, the new solution 
appeared to be suitable for describing mode I and also mixed mode stress distributions 
in the vicinity of the notch tip and bisector. With reference only to mode I principal 
stress distribution due to a remotely applied tensile load, the local stress formulas were 
later extended to the entire ligament width by involving global equilibrium conditions 
[28].  

The aim of the present work is to extend this approach to bending problems taking 
into account both plane and axi-simmetric models. More precisely, the expression of the 
maximum principal stress along the notch bisector is modified by combining the frame 
in Ref. [28] and some suggestions for bending problems due to Glinka and Newport 
[12]. Stress fields over the whole ligament width are obtained simply on the basis of 
global equilibrium conditions. The accuracy of the theoretical distribution is checked by 
FE analyses carried out on finite size components  weakened by U, V and semi-circular 
notches and subjected to pure bending or combined tensile and bending loads. 
 
 
ASYMPTOTIC STRESS DISTRIBUTIONS AHEAD NOTCHES 
 
Closed form equations valid for V-shaped notches in plates subjected to Mode I or 
Mode II loads have recently been reported in the literature [21] improving the accuracy 
of previous solutions [17, 19]. The U and V-notch free edge has been described via the 
conform mapping due to Neuber [23] (Figure 1). On the basis of  the analytical potential 
functions 
 
 µλ +=ϕ zdza)z(  µλ +=ψ zczb)z(  (1) 
 
explicit formulas have been obtained by imposing some equilibrium conditions along 
the free edge: 
 
 ( )σu u u=

=
0

0, ( )τuv u u=
=

0
0 (2) 

 
Due to the low number of free parameters involved, conditions (2) cannot be 

satisfied over the entire free edge and, therefore, the final expressions for stresses were 
approximate.  

Re-arranging parameters in Eq. 1, Mode I stress components (referred to the polar 
co-ordinate system shown in Figure 2) are [21]: 
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Analogous expression were derived for mode II stress components [21]. 

In Eqs 3 coefficient λ is the well known Williams’ eigenvalue valid for sharp V-
notches [29], while µ is an additional exponent, essential to describe the stress field in 
the vicinity of the blunt notch tip. Finally χb, χd and χc are linearly dependent terms, 
whose expressions were derived by applying the local boundary conditions on the notch 
free edge [21]. When the tip radius is null, Eqs 3 are exact and coincide with the well 
known solution for sharp V-shaped notches due to Williams [29].  
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Figure 1: Auxiliary system of curvilinear 

coordinates (u, v). 
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Figure 2: Coordinate system and symbols 

used for the stress field components. 
 

Table 1: Parameters in Eqs 3 for mode I stress distributions. 
 

2α  

 (degrees) q λ1 µ1 χb1 χc1 χd1 ω1 

0 2.00 0.500 -0.500 1.00 4.00 0.00 2.00 
45 1.750 0.505 -0.432 1.166 3.752 0.083 1.738
90 1.500 0.544 -.0345 1.841 2.506 0.105 1.080

135 1.25 0.674 -0.22 4.153 0.993 0.067 0.345
150 1.167 0.752 -0.162 6.362 0.614 0.041 0.165

 



 

On the other hand, in the case of a slim parabolic notch (i.e. a blunt crack, with 2α=0 
and q=2, see Figures 1-2) Eqs 3 coincide with Creager-Paris’ formulation [9]. Only in 
this case the distance between the notch tip and the origin of the co-ordinate system is 
r0=ρ/2. Otherwise, the distance r0 varies as a function of q, according to the expression 
reported in Figure 2. 

For Mode I problems, the parameter a1 can be correlated to the peak stress value 
according to the following expression [21]: 
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PRINCIPAL STRESS DISTRIBUTION DUE TO MODE I LOAD CONDITIONS 
IN FINITE SIZE COMPONENTS 
 
Equations 3 are valid in the close neighbourhood of the notch tip, where the influence of 
the remotely applied stress does not appear. Obviously the crack length can overcome 
this region and therefore a correction of such formulas, capable to prolong their range of 
validity, is clearly desirable. That would allow us a rapid calculation of the SIF on the 
basis of the principal stress distribution of the uncracked body. Following these 
guidelines, an analytical approach useful for finite size components under tensile loads 
was presented in Ref [28], with reference to  the tensile stress 

0=θθσ =σy along the notch 
bisector (Figure 2). It was given as follows: 
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The coefficient 1ω is given in Table 1. Eq. 5 represents an extension of the local stress 
distribution given in Ref. [21]: 
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Due to its nature, Eq. 5 coincides with Eq. 7 in highly stressed regions but it is also 

capable to describe the transition between notch stress zone and the nominal stress zone. 
It is worth noting that the parameter m in Eq. 5 can be evaluated on the basis of 
equilibrium conditions, without any best fitting of numerical data. A number of 



 

numerical analyses showed that theoretical values and FE data were in a satisfactory 
agreement. 
In order to extend here the advantages of previous formulation to bending problems, Eq. 
5 is modified as follows: 
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where the term 








κ
−

− 0rr
1  is reminiscent of a suggestion due to Glinka and Newport 

[12]. The influence of coefficients m and κ is shown in Figure 3, where Eq. 8 is plotted 
on the notch bisector of a double notched plate under pure bending. 
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Figure 3. Influence of m and κ on the theoretical stress distributions. 

 
Optimal values of  m  and  κ in Eq. 8 can be derived on the basis of equilibrium 

conditions. This possibility will be discussed in the following paragraphs, where some 
analytical procedures suitable for calculating the two parameters are presented for four  
different cases. 
 
Plate with double edge notch subjected to pure bending (PDEN) 
The first analysis considers plates weakened by double edge notches, h and H being the 
ligament and the gross section width, respectively. Under pure bending, stress 
distribution along the net section is clearly skew symmetric. This results in σy = 0  when 

Eq.8, m→0, κ=h/2

Eq.8, m→0, κ→∞

Eq.8, m=mopt., κ=h/2

a 

σnom 

h 

ρ

H 



 

r-r0=h/2. As a result we can assume 2h=κ , while the index m needs to be calculated 
involving the equilibrium condition: 
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In order to derive an explicit relation useful to evaluate m, Eq. 8 is introduced into Eq. 9 
so that 
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Eq. 10 can be solved by a numeric routine. A first trial value for m can be derived by 
noticing that in infinite width components (when r tends to infinite), the following 
relation is valid: 
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where netomnσ  is the maximum nominal stress referred to the net section. 
 
Plate with edge notch subjected to tensile loading (PEN) 
Another classical problem regards plates with a single notch, subjected to a remotely 
applied  tensile load. Due to the lack of symmetry, the net section is subjected to tensile 
and bending stresses. As a result, both parameters m and κ need to be determined by 
means of two equilibrium conditions. Equilibrium conditions on force and moment 
result in: 
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grossomnσ  being the nominal stress on the gross area. By introducing Eq. 8 into Eqs 13-14 

one obtains 
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Such equations allow us to determine m and κ. 
 
Plate with an edge notch subjected to three point bending (PEN) 
In three point bending, it is expected that a localised perturbing effect is provoked on 
the weakened section by the presence of the force F. On the other hand, only positive 
stresses on the opposite side are really important for crack propagation and their 
distribution mainly depends on the notch effect. 

The two equilibrium conditions, adapted to this load case, are: 
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In a more explicit form: 
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Parameters m and κ can be calculated by solving numerically Eqs 19-20. 
 
Round bars with circumferential notch subjected to pure bending (BCN) 
In axi-symmetric elements, difficulties non negligible are originated by the different 
symmetry shown by load conditions and component shape. Thus, in order to extend the 
present method to these models, some assumptions need to be introduced on the peak 
stress distribution along the circumferential notch. 
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Figure 4 Local co-ordinate system in axi-symmetric components. 

 
With reference to Figure 4,  suppose that the peak stress along the notch apex varies 

linearly as a function of the distance between the notch tip and neutral axis X. In order 
to support this hypothesis, the bar should be thought as the sum of infinite plane 
elements having an infinitesimal width dX. It is worth noting that in the neighbourhood 
of the Y axis, the net area (or gross area) to root radius ratio is constant, so that, at least 
in that region , also the stress concentration factor Kt is expected to be constant. Clearly, 
moving from the Y axis to the model border, the hypothesis devalues, but also the 
contributions to global equilibrium conditions tends to be less significant or null at all. 

Finally, noting that the force equilibrium condition can be easily satisfied by 
imposing κ=d/2 (d and D being the inner and the outer diameters, respectively) Eq. 21 
and then Eq. 22 allow us to derive parameter m (to be considered constant for a given 
component). 
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In Eq. 22 maxσ represents obviously the peak stress value at Y=0. Eqs 21-22 take 
advantage of the double symmetry of the geometry, so that calculations involve only a 
quarter of the transverse section. 
 
 
A  COMPARISON BETWEEN THEORETICAL AND NUMERICAL RESULTS  
 
Due to the approximate nature of Eq. 8, an accurate check of the theoretical stress 
distributions was made along the notch bisector. In particular, 69 plane models were 
analysed (see Table 2), where the ratio between the ligament width and the notch tip 
radius ranged from 2 to 80 and Kt net from 1.62 to 11.85. In parallel, 23 axi-symmetric 
models were considered, with d/ρ ranging from 4 to 80 and Kt net from 1.50 to 5.07. All 
FE analyses were performed by using isoparametric parabolic elements and taking 
advantage of symmetry conditions to create very fine meshes.  
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Some results are plotted in Figs. 5-8 where FE data and predicted values are compared 
for different models and load conditions.  

By using an error index defined as  
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predictedyFEMy
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σ

σ−σ
=δ  100 (23) 

 
Tables 3 and 4 make it possible a comparison at different distances from the notch 

tip. The agreement between numeric and analytical predictions is seen to be very good 
also at great distances from the notch tip. 
 
 
Table 2. Geometry of FE models. (a) plates with double edge notch (PDEN); (b-c) 
plates with an edge notch (PEN) subjected to tensile load and three point bending, 
respectively; (d) bars with a circumferential notch (BCN). 

 

Model
No. 

Type of 
notch 

Notch 
depth  

a 
[mm] 

Notch 
radius 

ρ 

[mm] 

Ligament 
width  

h 
[mm] (a)

Ligament 
width  

h 
[mm] (b-c)

Diameter 
d 

[mm] (d)

Kt net 
(a) 

Kt  net 
(b) 

Kt  net 
(c) 

Kt  net 
(d) 

1 Semi-circ 2.5 2.5 10 5 10 1.62 3.65 2.91 1.50 
2 Semi-circ 2.5 2.5 40 20 40 2.35 2.97 4.23 2.25 
3 Semi-circ 2.5 2.5 160 80 160 2.83 3.00 5.55 2.79 
4 U 10 0.5 40 20 40 5.56 11.85 9.31 5.07 
5 U 5 0.5 40 20 40 5.15 7.88 8.95 4.81 
6 U 2.5 0.5 40 20 40 4.51 5.64 8.13 4.31 
7 U 10 2.5 40 20 40 2.69 5.84 4.53 2.46 
8 U 5 2.5 40 20 40 2.57 4.44 4.46 2.40 
9 V (45°) 10 0.5 40 20 40 5.55 11.834 9.30 5.06 

10 V (45°) 5 0.5 40 20 40 5.15 7.87 8.93 4.80 
11 V (45°) 2.5 0.5 40 20 40 4.51 5.63 8.12 4.31 
12 V (45°) 10 2.5 40 20 40 2.89 5.84 4.53 2.47 
13 V (45°) 5 2.5 40 20 40 2.57 3.99 4.46 2.40 
14 V (90°) 10 0.5 40 20 40 5.30 11.40 8.90 4.85 
15 V (90°) 5 0.5 40 20 40 5.00 7.67 8.67 4.66 
16 V (90°) 2.5 0.5 40 20 40 4.44 5.55 7.99 4.24 
17 V (90°) 10 2.5 40 20 40 2.66 5.81 4.50 2.45 
18 V (90°) 5 2.5 40 20 40 2.56 3.98 4.44 2.39 
19 V (135°) 10 0.5 40 20 40 3.95 8.82 6.82 3.67 
20 V (135°) 5 0.5 40 20 40 3.90 6.13 6.81 3.66 
21 V (135°) 2.5 0.5 40 20 40 3.70 4.68 6.65 3.53 
22 V (135°) 10 2.5 40 20 40 2.37 5.32 4.11 2.21 
23 V (135°) 5 2.5 40 20 40 2.34 3.71 4.11 2.20 

 
 



 

Table 3. Errors δ% at different distances from the notch tip 
 

 PDEN BCN 
No. 0.1ρ 0.3ρ 0.7ρ ρ 2ρ 10ρ 20ρ 0.1ρ 0.3ρ 0.7ρ ρ 2ρ 10ρ 20ρ 
1 2.9 2.6 -3.9 -7.5    2.3 -0.4 -3.8 -4.0 4.6   
2 1.5 1.5 -0.4 -1.4 -0.5   1.3 0.8 -1.1 -1.7 -1.6   
3 0.9 0.1 -2.9 -4.0 -2.5 1.7 2.9 0.8 0.0 -1.5 -1.8 -1.2 0.0 0.1 
4 1.4 1.4 0.3 -0.1 -0.1 -0.0 -0.2 1.4 1.3 0.2 -0.2 -0.6 -1.2 -1.2
5 1.1 0.8 -0.2 -0.4 -0.1 0.0 -0.1 1.1 0.8 -0.2 -0.5 -0.6 -1.1 -1.0
6 0.6 0.1 -0.6 -0.6 -0.1 -0.0 0.1 0.6 0.1 -0.7 -0.8 -0.7 -0.8 -0.6
7 1.1 1.0 0.3 0.1 -0.4   1.3 1.1 -0.2 -1.0 -2.8   
8 0.5 0.2 -0.2 -0.2 -0.1   0.7 0.3 -0.8 -1.4 -2.1   
9 1.9 1.9 0.8 0.4 0.1 -0.1 -0.3 1.8 1.9 0.7 0.2 -0.4 -1.3 -1.4

10 1.6 1.5 0.4 0.1 0.1 -0.1 -0.2 1.6 1.5 0.4 -0.0 -0.5 -1.2 -1.1
11 1.1 0.9 0.0 -0.1 0.0 -0.1 -0.0 1.2 0.8 -0.1 -0.3 -0.6 -1.0 -0.7
12 1.6 1.7 0.8 0.3 -0.6   1.8 1.7 0.1 -0.9 -3.0   
13 1.0 0.9 0.2 0.0 -0.3   1.2 0.9 -0.5 -1.3 -2.3   
14 2.8 2.7 1.2 0.7 0.3 -0.2 -0.4 2.7 2.7 1.1 0.6 -0.2 -1.4 -1.5
15 2.6 2.5 1.0 0.6 0.2 -0.2 -0.3 2.6 2.5 0.9 0.4 -0.4 -1.3 -1.2
16 2.4 2.2 0.8 0.4 0.0 -0.2 -0.1 2.4 2.1 0.7 0.1 -0.6 -1.1 -0.8
17 2.9 2.9 1.4 0.6 -1.0   3.9 2.9 0.6 -0.7 -3.4   
18 2.5 2.4 0.9 0.2 -0.8   2.6 2.3 0.1 -1.0 -2.8   
19 2.3 1.1 0.0 -0.1 0.1 0.0 -0.2 2.3 1.0 -0.1 -0.2 -0.3 -1.1 -1.4
20 2.3 1.0 -0.1 -0.2 -0.1 -0.0 -0.1 2.3 1.0 -0.2 -0.3 -0.4 -1.1 -1.2
21 2.3 0.9 -0.2 -0.4 -0.2 -0.1 0.1 2.3 0.9 -0.3 -0.5 -0.6 -1.0 -0.8
22 2.7 1.7 0.6 0.3 -0.6   2.8 1.7 0.1 -0.6 -2.7   
23 2.6 1.5 0.4 0.1 -0.5   2.7 1.5 -0.1 -0.8 -2.6   
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Figure 7. Stress distributions under a tensile 

load (Model No.1, PEN). 
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Figure 8. Stress distributions under three 

point bending (Model No.15, PEN). 
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Table 4: Errors δ%  at different distances from the notch tip 

 
 PEN  (eccentric load) PEN (three point bending) 

No. 0.1ρ 0.3ρ 0.7ρ ρ 2ρ 10ρ 20ρ 0.1ρ 0.3ρ 0.7ρ ρ 2ρ 10ρ 20ρ 
1 1.8 -0.1 -1.3 -0.2    1.9 -0.9 -1.8 -0.1    
2 0.6 0.1 -0.7 -0.8 0.2   1.6 0.6 -2.1 -2.9 -3.7   
3 0.6 -0.2 -1.6 -1.9 -1.1 0.3 0.6 0.8 -0.0 -1.8 -2.5 -3.6 -4.1 7.4 
4 1.3 1.2 0.2 -0.1 -0.2 -0.2 0.1 1.8 1.9 0.9 0.4 -0.7 -1.2 0.5 
5 0.9 0.4 -0.5 -0.7 -0.3 -0.0 0.1 1.4 1.3 0.3 -0.1 -0.8 -1.0 0.6 
6 0.4 -0.2 -1.0 -0.9 -0.3 0.0 0.2 0.8 0.5 -0.2 -0.3 -0.2 -0.2 2.4 
7 1.0 0.8 0.0 -0.3 -0.4   1.7 1.6 -0.8 -2.0 -1.4   
8 -0.0 -0.6 -0.9 -0.7 0.3   1.1 0.6 -1.4 -2.3 -0.9   
9 1.8 1.8 0.7 0.3 -0.0 -0.3 -0.0 2.1 2.4 1.2 0.7 -0.5 -1.3 0.4 

10 1.4 1.2 0.1 -0.1 -0.1 -0.2 0.0 1.8 1.9 0.8 0.3 -0.7 -1.2 0.5 
11 0.9 0.5 -0.3 -0.4 -0.1 -0.1 0.1 1.4 1.2 0.2 -0.2 -1.0 -1.1 0.7 
12 1.5 1.5 0.4 -0.2 -0.6   2.2 2.1 -0.6 -1.9 -1.5   
13 0.6 0.1 -0.4 -0.6 0.0   1.6 1.2 -1.2 -2.3 -1.0   
14 2.7 2.7 1.2 0.7 0.1 -0.5 -0.1 3.0 3.1 1.6 1.0 -0.4 -1.4 0.4 
15 2.5 2.3 0.8 0.3 -0.1 -0.3 -0.1 2.9 2.9 1.3 0.7 -0.6 -1.4 0.5 
16 2.2 1.9 0.4 0.1 -0.2 -0.2 0.1 2.6 2.4 0.9 0.3 -1.0 -1.2 0.7 
17 2.8 2.8 0.9 -0.0 -1.1   3.3 3.1 -0.2 -1.9 -1.8   
18 2.1 1.7 0.2 -0.4 -0.5   3.0 2.5 -0.7 -2.2 -1.5   
19 2.3 1.1 -0.0 -0.1 -0.0 -0.2 -0.0 2.5 1.3 0.2 0.0 -0.5 -1.5 0.5 
20 2.2 0.8 -0.3 -0.5 -0.4 -0.1 0.2 2.5 1.3 0.3 -0.0 -0.5 -1.5 0.5 
21 2.1 0.6 -0.6 -0.8 -0.6 0.0 0.3 2.4 1.2 -0.0 -0.2 -0.9 -1.4 0.8 
22 2.7 1.7 0.4 -0.1 -0.8   3.0 1.8 -0.7 -1.8 -1.7   
23 2.3 1.1 -0.1 -0.4 -0.4   3.0 1.7 -0.8 -1.9 -1.6   

 
 
CONCLUSIONS 
 
Some equations suitable for describing the distribution of the maximum principal stress 
along the entire ligament width of finite size plates and bars subjected to bending are 
presented. The equations are obtained by combining a recent formulation suitable for 
describing the stress distributions in the vicinity of U and V–shaped notches and some 
suggestions due to Glinka and Newport. The method involves global equilibrium 
conditions and it does not require additional coefficients determined by a best fitting of 
numerical data.  

Validation of the method has been performed on the basis of about 90 different FE 
models. The agreement between theoretical distributions and numerical data was seen to 
be very satisfactory. 
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