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ABSTRACT. In many practical cases crack growth leads to abrupt failure of 
components and structures. For reasons of a reliable quantification of the 
endangerment due to sudden fracture of a component it therefore is of enormous 
importance to know the threshold values, the crack paths and the growth rates for the 
fatigue crack growth as well as the limiting values for the beginning of instable crack 
growth (fracture toughness). This contribution deals with the complex problem of a –
however initiated– crack, that is subjected to a mixed loading. It will present hypotheses 
and concepts, that describe the superposition of Mode I and Mode II (plane Mixed 
Mode) as well as the superposition of all three Modes (Mode I, II and III) for spatial 
loading conditions. Those concepts admit a quantitative appraisal of such crack 
situations and a characterisation of possible crack paths. 
 
 
MIXED MODE FRACTURE AND FATIGUE PROBLEMS 
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Figure 1. The three fracture modes. 

Local Mixed-Mode loading conditions at cracks can be observed, if due to either the 
external loading or the orientation of the crack the three basic fracture modes (Figure 1) 
temporarily or permanently occur in combination. This means, that the loading of the 
structure creates a non-symmetrical, singular stress field in the vicinity of the crack 
front. Thereby the crack deforms in a way, that not only an opening, but also a planar or 
non-planar displacement of the two crack surfaces can be found. Consequently the 
stress field in the vicinity of the crack front is defined not only by the stress intensity 



factor KI, but also by KII and/or KIII. In practical cases such crack problems occur e.g. 
under superimposed loading of a structure, kinked or branched cracks, multiple cracks, 
cracks initiating from notches, cracks in welded or adhesive joints and in composites. 
They are caused by static, dynamic or thermic loads, by superposition of load-, thermo- 
and residual stresses as well as by change of loading or utilisation. Examples for Mixed 
Mode cracks in a framework can be gather from Figure 2.  
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Figure 2. Examples for Mixed Mode crack cases in a frame structure. 

 
The influence of changes in loading and utilisation conditions of a machine part or 

component is exemplified in Figure 3. Any alteration of the loading condition of the 
structure might result in an alteration of the crack orientation and the crack path also. 
The change of the crack growth direction is provoked by a change of the Mixed Mode 
portions, because in isotropic materials a “long crack” (from a fracture mechanical point 
of view) only under pure Mode I loading growth straight on (see Figure 4 ). Mode II 
loading generally leads to a kinking of crack while Mode III causes a twisting of the 
crack front. But also the superposition of Mode I, II and III creates special crack 
surface, which can often be observed in practical cases.  
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Figure 3. Possible crack propagation during lifetime of a structure. 
 
The superposition of Mode I and Mode II at a crack generally is called plane Mixed 

Mode, while the superposition of all three Modes I, II, III can be characterised as spatial 
Mixed Mode loading condition. Hypotheses and concepts for both plane and spatial 
Mixed Mode problems will be described in the following. 
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Figure 4. Different types of crack growth under Mixed Mode loading. 
 
 

The basis for all concepts are the near-field-solution for the stress distribution at the 
crack front: 
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Eqs 1a-1c are valid for plane stress, while Eqs 1d-1fg have to be added for a spatial 
stress state. All those stress field equations are based in a cylindrical co-ordinate system 
with the co-ordinates r, ϕ and z (Figure 5). For rà0 all stress fields become singular. 
The parameters KI, KII and KIII are the stress intensity factors for the three fracture 
modes (Figure 1). They describe the loading situation at the crack tip and can be used to 
estimate the risk of fracture as well as for the description of the fatigue crack growth. 
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Figure 5. Cylindrical coordinate system and stress components at a 3D crack front. 

 
 
PLANE MIXED MODE CRACK PROBLEMS 
 
Plane Mixed Mode problems are characterised by the superposition of the fracture 
modes I and II. Within the scope of the linear elastic fracture mechanics (i.e. the 
dimensions of the plastic zone around the crack is small in comparison to the crack 
length and the other dimensions of the structure) the stress field at the crack tip is 
determined by the intensity factors KI and KII. Crack growth can take place in stable as 
well as unstable manner.  
 
Fracture Criteria for Unstable Crack Growth 
In the context of unstable crack growth especially the following questions are of 
interest: 

• When does the crack growth become unstable? 
• To which direction does the unstable crack grow? 
• At what loading level or at what crack length does a structure fail? 
• What is the magnitude of safety vs. unstable crack growth/fracture in a 

structure? 
Those questions can be answered by so-called fracture criteria for plane Mixed Mode 
problems. The most important concepts will be explained in the following. 

For pure Mode I-loading unstable crack growth occurs, if the Mode I stress intensity 
KI reaches the fracture toughness KIc:  

IcI KK ≤  (2) 
The application of this criterion to a Mixed Mode situation would result in a non-
conservative estimation for the risk of fracture. For a plane Mixed Mode loading of a 
crack besides the stress intensity factor KI also the stress intensity factor KII has an 
influence on the beginning of unstable crack growth and thus on the fracture of 
components and structures. 
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Figure 6. Fracture limit curve for plane Mixed Mode. 

 
As can be seen in Figure 6, the beginning of unstable crack growth can be described by 
a fracture limit curve. The fracture toughness KIc then is the limiting value on the KI-
axis. The limit KIIc on the Mode II-axis so far has only very rarely been experimentally 
determined. If the loading condition at a crack in a structure corresponds to the point P 
of Figure 6, so no unstable crack growth is to be expected. If in contrast to this the load 
level increases in a way, that e.g. point C of the fracture limit curve is reached, 
immediate instable crack growth will occur. In the latter case, the crack kinks according 
to the KI- and KII-portions (see Figure 4). Thereby a positive shear stress produces a 
positive KII-factor, but a negative crack deflection angle –ϕ0, while a negative shear 
stress results in a negative KII and a positive angle ϕ0 (Figure 7). 
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Figure 7. Crack deflection angle under Mixed Mode loading. 

 
The beginning of unstable crack growth as well as the crack growth direction can be 
determined by the use of one of the following fracture criteria. 



Criterion by Erdogan and Sih 
The predictions of the maximum tangential stress criterion by Erdogan and Sih [1] are 
based on the tangential stress σϕ, Eq. 1b. According to this criterion, the crack growth 
starts radial from the crack tip with an angle ϕ=ϕ0 perpendicular to the maximum 
tangential stress σϕ,max. The crack becomes unstable as soon as σϕ,max exceeds the 
material limiting value σϕ,c, or –equivalently– if the comparative stress intensity factor 
Kv resulting from σϕ,max exceeds the fracture toughness KIc [2]. The crack deflection 
angle can be obtained by  
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The fracture limit surface is given by 
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Criterion by Sih 
The criterion of strain energy density [3] is based on the elastic energy density and the 
near-field equations for plane Mixed Mode problems. According to this criterion a crack 
extends –beginning from the crack tip– in the direction of the smallest energy density 
factor Smin. A crack becomes unstable, if Smin reaches a material limiting value Smin,c. 
Results of this criterion i.a. are presented in [2].  
 
Criterion by Nuismer 
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Figure 8. Co-ordinates and stress intensity factors for a kinked crack. 

The criterion of energy release rates by Nuismer [4] is based on the assumption of a 
short kinked crack (Figure 8). For the tip of the kinked crack stress intensity factors KI* 
and KII* and the energy release rate  
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are calculated. According to this criterion the crack propagates into the direction of the 
maximum energy release rate. Unstable crack growth occurs, if Gmax=GIc. The results 
for the crack deflection angles and the fracture limit curve are identical with those of the 
criterion of maximum tangential stress [2]. 
 
Criterion by Amestoy et al. 
In the criterion of energy release rates by Amestoy et al. [5] at first for a short branch of 

a crack the stress intensity factors IK and IIK  and out of it the energy release rate G(ϕ) 
are calculated. According to this criterion the crack propagates into a direction ϕ0, so 

that 0K II = . Unstable crack growth will occur, if G(ϕ0)=GIc. The crack deflection 
angles and the fracture limit curve have to be determined iteratively by this criterion , 
which i.a. is described in [2]. 
 

0

0,2

0,4

0,6

0,8

1

1,2

0 0,2 0,4 0,6 0,8 1 1,2

KI/KIc

K
II
/K

Ic

Experiments
Erdogan and Sih/Nuismer
Sih
Amestoy
Richard

 
Figure 9. Comparison of the fracture limit curves for different hypotheses with 

experimental data. 

 
Criterion by Richard 
In the generalised fracture criterion [2, 6] a comparative stress intensity factor Kv is 
defined –comparable to the comparative stress σv in the classical stress hypotheses– 
which depends on the stress intensity factors KI and KII:  
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Consequently unstable crack growth occurs, as soon as Kv exceeds the fracture 
toughness KIc for Mode I. If the material parameter α1 is set to 1.155, one obtains an 
excellent approximation of the fracture limit curve of the maximum tangential stress 



criterion. For the determination of the crack deflection angle ϕ0 there does exist a 
simple relation, which has been proven by a large number of experiments [2, 7]: 
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whereby for KII>0 the angle ϕ0<0 and vice versa, while always KI>0. 
 
Comparison of the fracture criteria 
Figure 9 shows the fracture limit curves resulting from the described criteria. It becomes 
apparent, that the criteria by Erdogan/Sih, Nuismer and Richard are in good agreement 
with the experimental findings. Furthermore these criteria are able to predict the crack 
deflection angle for isotropic and nearly isotropic material sufficiently exact [2]. 
 
Fatigue Crack Growth 
If a structure is subjected to an oscillating load, even a load level far below the fracture 
limit might cause a crack to grow under certain circumstances. Thus the following 
questions arise for plane Mixed Mode fatigue loading: 

• Under what conditions does a crack grow? 
• Whereto does the crack grow? 
• How fast does the crack grow? 
• What is the remaining lifetime of the structure? 

Fatigue crack growth in plane Mixed Mode loading cases can be observed in the range  

c,Ivth,I KKK ∆<∆<∆  (9) 
This means, that fatigue crack growth is possible, if the cyclic stress intensity factor 
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exceeds the Threshold value ∆KI, th=∆Kth and is smaller than ∆KI,c=(1-R)Kc. Generally 
in this Eq. the parameter α1 can be set as 1.155. Also in the case of fatigue crack growth 
the crack generally shows the same sharp kinking as in the static case. For the 
determination of the kinking angle ϕ0 Eq. 8 can be applied. 

A very elegant means for the determination of the crack development as well as for 
the current crack growth rate and remaining lifetime is given by the Finite Element 
method. In this context especially the program FRANC/FAM [8] is an excellent tool, as 
it is able to simulate crack growth in planar structures. 
 
 
THREE-DIMENSIONAL MIXED MODE CRACK PROBLEMS 
 
Spatial Mixed Mode problems are characterised by the superposition of the fracture 
modes I, II and III. This means, that within the scope of linear-elastic fracture 
mechanics the stress intensity factors KI, KII and KIII are of importance for the 
estimation of risk of fracture in structures as well as for the evaluation of stable crack 



propagation processes. Depending on the Mode II- and Mode III-portions a more or less 
intense crack deflection can be observed (Figure 10). 
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Figure 10. Definition of crack deflection angles ϕ0 and ψ 0 . 

 
Fracture Criteria for Unstable Crack Growth 
For 3D-Mixed Mode problems only very few fracture criteria do exist. The important 
ones will be described in the following. 
 
Criterion by Sih 
At first sight, the well-known Strain Energy Density Criterion by Sih [3, 9] seems to be 
able to handle three-dimensional crack growth by taking the stress intensity factors KI, 
KII and KIII that are related to the three fracture modes into consideration. The strain 
energy density factor is defined as follows: 
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where µ is the shear modulus of elasticity and ν the Poisson's ratio. The crack angles ϕ0 
and ψ 0 are derived by minimising S of Eq. (11): 
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The formulation of ϕ0 resulting from the partial derivative of S by ϕ is depending on 
Mode-I and Mode-II stress intensity factors and ν but independent of ψ 0 as well as KIII. 
With respect to the second crack deflection angle the minimum of S is given while 
maximising the term cos(ψ 0). Therefore, the minimum of S is always in the direction of 
“ψ=0 –plane” independently of the Mixed-Mode combination. Therefore, this criterion 
has to be regarded as insensitive to Mode-III. A similar observation can be found in 
[13]. 



Criterion by Pook 
The second criterion for three-dimensional crack growth that is discussed here is 
proposed by Pook [10-12]. Pook uses two crack deflection angles ϕ0 and ψ 0 (see Figure 
10) for the description of the growing crack. For the determination of these angles the 
equations 
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are given resulting in a range of [-70.5°;+70.5°] for ϕ0 and [-45°;+45°] for ψ 0. For a 
Mixed-Mode (I+II+III) loaded crack front Pook’s criterion proposes the following 
strategy. With respect to crack growth predictions the crack deflection angle ϕ0 is 
calculated first using Eq. 14. Afterwards, the comparative stress intensity factors KvI,II 
and KvI,II,III are determined in a somewhat step-by-step process where the two stress 
intensity factors KI and KII for Mode-I and Mode-II define the comparative stress 
intensity factor KvI,II respectively, 
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which is then considered for the calculation of KvI,II,III as defined in Eq. (17): 
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Finally, ψ 0 results from Eq. 15.  
 
Criterion by Schöllmann et al. 
The σ1’-criterion [14, 15] is based on the assumption that crack growth develops 
perpendicular to the direction of σ1’ which is a special maximum principal stress. 
σ1’can be found on a virtual cylindrical surface whose axis is represented by the 
regarded part of the crack front. The stress state on the cylindrical surface and the local 
co-ordinate system of the cylinder is shown in Figure 5, where the z-axis is tangential to 
the crack front, the y-axis normal and the x-axis binormal to the crack plane. 

In the three-dimensional case the crack growth direction is perpendicular to the 
maximum principal stress σ1’ which is defined by the near-field stresses σϕ, σz and τϕz 
as follows: 
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Due to the assumption, that the crack growth direction is perpendicular to σ1’, the crack 
deflection angle ϕ0 as defined in Figure 10 can be calculated: 
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After substituting the near-field solutions of Eq. 1 into Eq. 19, considering σz=0 and 
differentiating partially by ϕ0 the following formulation can be found for ϕ0: 
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The second deflection angle ψ 0 (Figure 10) is defined by the direction of σ1’ and can be 
calculated according to the calculation of the maximum principal stress angle using Eq. 
21: 
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During the investigation of fatigue cracks under superimposed normal and shear loading 
the determination of a comparative stress intensity factor Kv is necessary for the 
calculation of the portion of crack propagation. For plane loading conditions Kv is only 
depending on KI and KII. Dealing with three-dimensional crack fronts KIII has to be 
taken into consideration as well. From Eq. 18 a formulation for Kv can be derived as 
follows: 
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where KIc is the fracture toughness for pure Mode I-loading. 
 
Criterion by Richard 
In order to simplify the prediction of crack growth under multiaxial loading 
approximation functions have been developed [7]. Furthermore, the formulas are helpful 
for practical application.  
The function Eq. 8 can easily be extended for Mixed-Mode I+II+III loading conditions 
by replacing the denominator (KI +|KII|) by (KI +|KII|+|KIII|). This leads to the new 
approximation function for the crack deflection angle ϕ0 as defined in Figure 10: 
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where ϕ0<0° for KII>0 and ϕ0>0°for KII<0 and KI�0. 



For the calculation of the second crack deflection angle ψ 0 this approach is 
applicable as well. The new approximation function for ψ 0 (Figure 10)is given in Eq. 
(24): 
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where ψ 0<0° for KIII>0 and ψ 0>0° for KIII<0 and KI�0. 
With A=140°, B=-70°, C=78° and D=-33° the Eqs 23 and 24 are in good agreement 

with the crack deflection angles predicted by the σ1’-criterion.  
 
Unstable crack growth will occur if the local loading condition along the crack front 
reaches a point on the fracture limit surface (Figure 14). This situation can be described 
by the following fracture criterion [7]: 

( ) ( ) Ic
2

III2
2

II1
2
I

I
v KK4K4K

2
1

2

K
K =α+α++=  (25) 

where α1=KIc/KIIc and α2=KIc/KIIIc. With α1=1.155 and α2=1.0 Eq. 25 is in excellent 
agreement with the Kv-prediction of the σ1’-criterion, Eq. 22. 
 
 
Comparison of the Fracture Criteria 
All of the proposed fracture criteria yield predictions concerning the crack deflection 
angles ϕ0 and ψ 0 and the fracture limit surface for the superposition of all three fracture 
modes. Figure 11 presents a diagram of the crack deflection angle ϕ0 according to the 
criterion of Schöllmann et al. In Figure 12 a diagram for the twisting angle ψ 0 is 
depicted, which results from the criterion by Pook. Finally the fracture limit surface 
resulting from the criterion by Richard can be seen in Figure 13. If the loading of the 
crack reaches this limit, unstable crack growth will immediately occur. A more detailed 
comparison of the criteria can be found in [17].  
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Figure 11. Crack deflection angle ϕ0 

according to Schöllmann et al. 
Figure 12. Crack deflection angle ψ 0 

according to Pook with ν=0.3. 

 



KII
c

KIc

KI
c

KIc

K III
c

K Ic

0.87

1

1

 
Figure 13. Fracture limit surface according to Richard. 

 
The following Table 1 presents the values for the crack deflection angles and the 
fracture limit, which results from the proposed criteria for pure Mode I, II and III 
loading conditions. 
 
 

Table 1. Results of the 3D criteria. 

 Sih Pook Schöllmann 
et.al. 

Richard 

Mode I: 
 ϕ0 

 ψ 0 

 KIC 

 
0° 
0° 
KIC 

 
0° 
0° 
KIC 

 
0° 
0° 
KIC 

 
0° 
0° 
KIC 

Mode II: 
 ϕ0 

 ψ 0 

 KIIC 

 
82,3° 

0° 
0,96 KIC 

 
70,5° 

0° 
0,87 KIC 

 
70,5° 

0° 
0,87 KIC 

 
70,5° 

0° 
0,87 KIC 

Mode III: 
 ϕ0 

 ψ 0 

 KIIIC 

 
undef. 

0° 
0,63 KIC 

 
undef. 
45° 
KIC 

 
0° 
45° 
KIC 

 
0° 
45° 
KIC 

 
 
Fatigue Crack Growth 
A crack, which is subjected to an arbitrary Mixed mode loading, is able to propagate 
under fatigue crack growth conditions, if the local crack front loading combined of 
Mode I, II and III portions is located in between the Threshold and 3D fracture-surface 
in the KI-KII-KIII-diagram (Figure 14). 
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Figure 14. KI-KII-KIII-diagram for Mixed Mode loading with  

the fracture limit and the Threshold surface. 

 
This condition can be written down by the formula 

c,Ivth,I KKK ∆<∆<∆  (26) 

Hereby ∆Kv is the cyclic comparative stress intensity factor, which can be derived from 
Eq. 25: 
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∆
=∆  (27) 

As before, α1=1.155 and α2=1.0.  
For 3D- Mixed Mode problems crack growth simulations can be performed also by 

the means of the Finite Element method. I.a. the program system ADAPCRACK3D is a 
valuable tools for such kind of simulations [18, 19]. 
 
 
CONCLUSION 
 
For theoretical determination of crack paths and the examination of crack and crack 
growth problems in real structures several hypotheses and concepts are available. Under 
consideration of experimental experiences with the brittle fracture behaviour of cracks 
can be pointed out, that for plane Mixed Mode problems the criteria by Erdogan/Sih and 
Richard and for 3D-Mixed Mode Problems the criteria by Schöllmann et al. and 
Richard are well suited for the description of crack growth. For the purpose of analysing 
crack paths and crack propagation processes under fatigue loading in real structures 
those concepts have to be implemented in Finite-Element programs. Special cases, like 



the crack growth in anisotropic materials or the sliding of cracks under pure Mode II or 
Mode III loading can however not be reasonably described by the proposed concepts. 
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