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ABSTRACT The Engineering Treatment Model {(ETM) consists of a set of simple equations
which serve for estimating the J integral or the crack tip opening displacement as driving force
parameters in small scale yielding as well as in fully plastic conditions under the assumption of
plane stress and of a piece-wise power law behaviour of the material’s stress strain curve. It is
shown that the applied load, applied strain, J integral, and crack fip opening displacement are
interrelated through simple expressions. The ETM predictions are validated by means of experi-
mental resuits and finite element calculations, both on laboratory specimen configurations.

Notation

a Crack length

a,  Fatigue pre-crack length

a,  Plasticity corrected crack length

E Young’s modulus

F Applied load

G Linear elastic strain energy release rate
Plasticity corrected G

J J integral

K Linear elastic stress intensity factor
K, Plasticity corrected K for tension

K, Plasticity corrected K, general

K Plasticity corrected K for bending = 0.5K;, + K)
n Strain hardening exponent

5 Load line displacement

5, s due to crack

5, & without crack

W  Characteristic width of specimen or structure

£ Applied strain

& Crack tip opening displacement

* GKSS-Forschungszentrum Geesthacht GmbH, D-2054 Geesthacht, FRG.
1111




iti2 DEFECT ASSESSMENT IN COMPONENTS

8s  Operational definition for experimental determination of &; subscript 5
indicates gauge length of 5 mm

a Applied stress

Subscript Y refers to value at yield load, F.

Introduction

The assessment of the severity of a crack in a structural part requires the
knowledge of the two quantities:

— driving force as a measure of the stresses and strains in the vicinity of the
crack tip, expressed in the parameters stress intensity factor, K, J integral,
or crack tip opening displacement (CTOD) with the symbol §;

- the material’s resistance against crack growth, either as a single value
parameter (the fracture toughness) or as the crack growth resistance curve
(R curve), both expressed in terms of K, J, or é.

The determination of the latter quantity is well documented in various test
standards or documents which are supposed to become standards eg (1)—(4).

As far as the driving force is concerned, the regime of Iinear elastic fracture
mechanics does not present major problems. The stress intensity factor can be
expressed in the form

K = a./(na)Y(a/W) n

where Y(a/W) is a calibration function which depends on geometrical factors
only (geometry of the part under consideration, of the loading, and of the
crack). Values for the calibration function for many configurations can be
found in the literature (5)(6). On the other hand, under elastic—plastic and fully
plastic conditions the situation is much less convenient. The driving force
depends in a complicated manner on both the geometry and the material’s
stress—strain curve,

Although the quantities desired, like the driving force J or 4, or displace-
ments like the load line displacement, can be adequately determined by
numerical methods, it is necessary to have analytical relationships even if they
are based on simplifying assumptions. The benefit of such analytical relation-
ships is obvious, since a formula shows clearly the effect of the relevant param-
eters on the quantity desired and they can serve for quick assessments of
structural problems. This is why assessment methods like the COD design
curve with its recent modifications (7)(8) and the R6 failure assessment
diagram (9) have been established in the past. They are well documented in
the cited references and shall not be described in detail in the present paper.
Their wide spread use shows clearly the necessity of procedures of this kind.

Recently, the engineering treatment model (ETM) was introduced which is
mainly based on the CTOD, but it can also be applied to the load line dis-
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placement and the J integral (§0)<(12). Starting from a set of simplifying
assumptions, simple analytical expressions have been derived which are
intended to predict CTOD or the J integral as driving force parameters,
without built-in safety factors. It should be mentioned here that within the
framework of ETM the CTOD refers to the experimental definition §5 which
measures the CTOD at the specimen’s side surface, spanning the original
fatigue crack tip over a gauge length of 5 mm (13)(14). This definition is
numerically close to values determined after BS 5762,

In the present paper a brief overview on the main iterns of ETM will be
given. It will then be shown that §; as predicted by ETM can be easily con-
verted to the J integral; with this, direct conversions exist between the stress
intensity factor, K, the J integral, and the CTOD. Extensive validation of
ETM has been performed so far on laboratory specimens tested at GKSS and
on some finite element calculations carried out at the Technische Hochschule
Darmstadt. Some examples of these will be shown in the paper. Furthermore,
ETM will be compared with the EPRI Handbook and with Turner’s J design
curve formulation. The paper then concludes with failure prediction.

Basic ETM formulae

Assumptions

The cracked part is assumed to deform in a state of prevailing plane stress
which means that the predictions can be expected to be more accurate for
relatively thin cross sections than for thick sections.

It is anticipated, that the material’s stress—strain curve can be approximated
by the piece-wise power law

€ g |He
e FA R ?

For convenience, the yield strength, oy, is set equal to the proof stress, a5 .

Crack tip opening displacement

Below the yield load, F,, which is the load at which the net section attains the
yield condition, the CTOD in terms of 35 is supposed to be given by the small
scale yielding, non-hardening solution '

55 =2
5= T, 3

where K, is the plasticity corrected stress intensity factor, which can be
approximated for tension configurations by

Ky=Kg=0 \/ (mae) Y@/ W) “
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with
KZ

R ?

Qopr =
and Y being the calibration function for the geometry under consideration.
Bending configurations can be characterised by

K, = K =05(K. + K) {6)

If the loading configuration cannot be clearly identified as tension or bending,
equation {4) is to be preferred.

Figure 1 shows predicted versus measured values of §5. Equation (3) yields
predictions with reasonable accuracy up to the yield load, Fy. It must be
mentioned, however, that below 0.5F, equation (3) yields improper results as
compared with experimental 85 determinations. At loads greater than Fy the
net section deforms proportional to (F/Fy)'™ (12). The behaviour of the yield-
ing net section may be characterised by any suitable displacement along a
gauge length spanning the cracked cross section, in particular by 5. Thus,
recalling equation (2), strains or displacements are given by their respective

150 | 20MnMoNi55

35NiCrMo 16 °
2024 -FC 1
I 2024 -T351 7
I SENB,CT 1
100F |B=5mm .
s0| & o5, -
£ i 7’ i
=+ 3 [ e =2 4
- P 5?@:5_@ |
%51 {) v I L i L ! L : 1 1 1 3 1 1 Il |
0 50 100 150

ST, pHm

Fig 1 Experimental and predicted CTOD in terms of §; for SENB and CT specimens made of
four materials; loading conditions: F = (0.4 ... 1) F, (12)
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values at yield load times (F/Fy)'/™, in particular

55 1fa
a—f(r%) )

with dy being the value of d5 as predicted by the small scale yielding solution
according to equation (3) at F = Fy. Equation (7} is a geometry independent
driving force expression which depends on the material through the hardening
exponent, #. The example shown in Fig. 2 shows good coincidence between
experiment and prediction.

Figure 3 shows schematically how &, behaves as a function of the applied
load along with the estimation formulae equations (3) and (7).

An alternative formulation for ; under fully yielding conditions and for
a/W — 0 expresses d5 as a function of the applied strain

ds &

3 v @
which is a geometry and material independent driving force formulation.

For the infinitely wide plate under tension (a/W — 0) the stress intensity
factor is given by K = ¢./(ra), dy is calculated with ¢ > oy, and with the
plasticity correction of equation (5) one obtains the simple relationship

ds = 1.5mae ©

Load line displacement

The load line displacement, s, can be partitioned into a crack contribution, s,
and a no-crack contribution, 5,,. Under the conditions of contained yield
{F < Fy} the linear elastic solutions with a,,; instead of the actual crack length,

5 I T H T 1 T 1] T
- | AlMg3 B.ac/W=02 .
ceT o..00/ W=05
- B=10mm -
2W =100 mm -F = Fmax \ ‘
| -
Li:_ n=0.23
~ o |
| 1 | [ N B N O S I
1 5 10

0s /0y

Fig 2 Crack tip opening displacement, 8, as a function of the applied load for four CCT speci-
mens of the aluminum alloy AlMg3 (16). The n value shown in the graph is the strain
hardening exponent determined in the tensile fest
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Fig 3 Schematic showing estimation formulae for 3, in relation to the loading ranges contained
yield and full plasticity

a, gives quite accurate predictions. In the net section yielding case, s,, remains
elastic, and s, can be estimated according to the way shown for &5

F i/n
§= S8, + S”(F) (10)
Y

where s,y is the value for s, at F = Fy. Figare 4 compares the load line dis-
placement measured on a CET specimen of the steel 35NiCrMol6 with the
ETM prediction. In this experiment the elastic compliance of the starting

— T T
200+ -
e 35NiCrMo16 |
e ccT i
0or s 2W=100mm
B=5.3mm e experimental .
ag/ W=0.4 —ETM _
= - 4
N ] 4
LL.. O 3 L 1 i L ' { ! L | ! 1 ! 1 | 1 L . :
0 1 2 3 A
S, M

Fig 4 Experimental load line displacement, s, compared with ETM gprediction
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Fig5 J integral for a CCT specimen of the austenitic stee] X6CrNil81l, plane stress finite
element calculations by Amstutz and Seeger (18) and ETM prediction

crack length, a,, was about 25 percent higher than the theoretical one which
explains the deviations. Thus, if an effective modulus of elasticity from the
experiment had been taken, an almost perfect prediction had resufted. Further
examples are given in reference (12),

Jintegral
Under contained yielding conditions J is simply given by

KZ
J=Cu="1 (11)

with K, according to equations (4) and (6). In the fnlly plastic regime (17)

J=Jdg+Jy (122)
U
=G ——pl :
o g (12b)

with U, being the plastic work done on the specimen.
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For a rigid-plastic material, U, = s * Fy. It is assumed that for an elastic—
work hardening material the plastic work can be set equal to the plastic
portion, s, of the load line displacement times an average flow load, Fg,
which is equal to the average of the actual load and the yield load, Fy. Hence

Hp1 Sp1 F+ Fy

I=Ctgw_a 2

(13)

If general yielding (i.e., gross section yielding) occurs, only that part of s, has
to be taken which is due to the crack.

In Fig. 5 a prediction using equation (13) is compared with finite element
calculations for a CCT specimen of an austenitic steel. The load line displace-
ment necessary for estimating J was calculated using equation (10) along with
the linear elastic solution for s of a CCT specimen provided by reference (6). It
can be seen that ETM gives a very accurate estimate of J.

Alternative J formulations

Turner introduced a J design curve for which he proposed several equations
(17), one of which being

J_ z_s(i _ o.z) for = > 1.2 (14)
GY EY EY

This expression suggests geometry and material independence which is due to
the normalisation of J by Gy.

According to the EPRI Handbook (15) the J integral for a piece-wise power
law hardening material can be formulated using a plasticity corrected linear

elastic term and a fully plastic contribution from a pure power law (PPL)
hardening material, i.e.

J=G,; for FSFy (15a)
J=(GY — Jfpr) + Jpp; for F = Fy (15b)
F i
Jopr = J gPLI:F] (15¢)
Y

where G, is the plasticity corrected strain energy release rate, G, at F = Fy
and Ji,; is a geometry dependent fully plastic term which has been determined
by finite element calculations for a few geometries. Jip,, in turn is given by

a
JEpL = Oy ey aj(“ﬁ;, n) (16)

where J{a/W, n) is given in (15) in the form of tabulated values.
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Introducing Gy = o3 na/E (which is, of course, valid for the finite body only)
leads to

‘IPPL 1 a F {1+n)n
- H =, Pl
Gy = \w"IF, {17

The structure of these J expressions suggests an alternative formulation which
is compatible with the ETM formalisms (see, €.g., equations (7) and (10))

J F {1+n}yn
7. (FY) ; for F>Fy (18)
Here Jy is the value of J at F = F, whereas Gy in equations (14) and (17} is
the lingar elastic part of J at F = Fy.,

Jy is simply calculated using the conversion

K2
— ot

J= E (19)
with K, from equations (4) or (6) for F = Fy. Thus, the prediction of J in the
fully plastic regime requires just the linear elastic solution for K, the limit load
solution {Fy) and the strain hardening exponent.

In Fig. 6 J values for a CT and a CCT specimen obtained by plane stress
finite element calculations are plotted on double logarithmic scales. The slope
ni(n + 1) of the straight line has been calculated using that value of n which
was determined in the tensile test as the average slope of a double logarithmic
o—¢ plot. Thus, the straight line in Fig. 6 represents a prediction and it is not
drawn as the average line through the data points. It is obvious that the
relationship between J/Jy and F/Fy is the same for both specimen types
{(which may represent some extreme loading cases, i.e., tension and predomi-
nantly bending), and that equation {18) represents a reasonable prediction
formula for J as a driving force parameter, Figure 7 presents absolute J values
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- I X6CrNi 1811 |
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. e CT |
N W =50mm ’_____‘,.f—-e*"’“’j'—ﬁf
L. a/W=08 [ 5 1+n
\ __’___,_.-——-‘On
1 _.—0""_'—‘-.:-.9 L ; NN WY N R | I L ' T W
1 5 10 50 ° 100
J /7 '

Fig 6 J/J, plotted as a function of F{F, for an austenitic steel, plane stress finite element calen-
lations by Amstutz and Seeger (18)
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Fig 7 J velues of a CT specimen determined by finite element calculations (18} and by ETM
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Fig 8 Relationship between 6, and J in the fully plastic regime, finite element results from refer-
ence (18} compared with ETM
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Fig 9 Determination of instability for constant load centrol using the §,-R curve method

for the CT specimen of the previous diagram including data from the regime
F<F,.

Considering equations (2)(7)(8), J can be related to the applied strain, ¢, and
to 85 through

J F {1+n}n £ 1+n 55 f+n
&) -6 R 0

The right hand side of equation (20) is validated in Fig. § which shows a very
good agreement between finite clement calculations and the predicted relation-
ship between J and &5. Thus, equation {20) provides a link between J integral,
CTOD, applied load, and applied strain.

Prediction of failure

It is immediately obvious from equation (20) that critical values of applied
strain or applied load can be predicted if critical values of J or §5 are available
as material fracture parameters. Hence, the critical load is given by

J \#/itn)
F,=F Y(J—) (21)
Y
or by
5 n
F, = FY(E) 22
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and the critical strain is given by

J 1/t +n)
&, = EY(.—I—:::) (23)
or by
=iy g (24)

It should be noted that these expressions contain no safety factors, i.e., they
are aimed at predicting rather than assessing on the safe side, with all possible
risks in situations which are less clear than simple laboratory specimens,
Examples of predicted failure loads have already been reported in references
{11)(12). Their degree of accuracy is, of course, similar to that which can be
deduced from the diagrams shown in this paper.

In addition to failure predictions using single-valued material parameters, a
complete R curve analysis can be done. This is shown schematically in Fig. 9
for load controlled situations, The driving force curve starts in the small scale
yielding regime, and after some crack growth the yield condition (F = Fy) in
the decreasing net section is reached. It is there where the expressions for full
plasticity start to apply. Worked examples have also been reported in refer-
ences {E1)(12).

Discussion and conclusions

The ETM provides simple analytical expressions for predicting the CTOD or
the J integral as driving force parameters, in the contained vielding and in the
fully plastic regimes. Due to the normalisation of J or CTOD and of load or
strain by their respective yield values, geometry independent formulations are
obtained which may be regarded as material dependent ‘master curves’ in con-
trast to the well known ‘design curves’ which have no material dependence.
The material dependence in the ETM is caused by the strain hardening expo-
nent, see for example equation (20). The closed form solutions ease the appli-
cation; for example, sensitivity analyses can be easily done. According to the
model, the size and geometry independence of the ETM master curve — be it
expressed in terms of J or CTOD — means that it is applicable to any struc-
ture, provided that the appropriate input information (K solution, Fy solution,
gy, and n) is available. This makes it unnecessary to pre-determine influence
functions like in the EPRI Handbook. Thus, an effective tool for predicting
driving force parameters is provided by ETM.

Extensive validation of ETM has been performed so far on laboratory speci-
mens made of a variety of materials tested at GKSS and on some finite
element calculations carried out at the Technische Hochschule Darmstadt. As
the ETM formalisms were derived under the assumption of plane stress condi-
tions the validation refers to experiments and finite element calculations on

DRIVING FORCE UNDER STRESS CONDITIONS 1123

thin sections. The examples shown in this paper and those compiled in the
references give confidence that the ETM, in spite of the simplified underlying
mechanical model, is not only easy to apply, as stated in the previous para-
graph, but that at least the behaviour of laboratory specimen type geometries
can be very well modelled in the regime of planc stress.

The first application of the ETM to a thin-walled large scale structural part
shows that the ETM works equally well beyond laboratory scale specimens, as
it is demonstrated in a companion paper in this volume (19).

It is expected that the application of the ETM to thick sections and to
welded joints will cause problems. Future work will therefore concentrate on
these topics.

— Thick sections will be investigated both experimentally and by three-
dimensional finite element calculations. The ETM formalisms will then be
checked with respect to their ability to model situations outside the regime
of plane stress.

— Model welds with longitudinal cracks in the weld metal and in the fusion
line are being prepared and are intended to be deformed transverse to the
weld, with measurements of . The ETM has to be modified such that the
different stress—strain curves of the base material and of the weld metal are
taken into account, when 3 is expressed in terms of applied load or applied
strain.

It is believed that the future work will enable ETM to provide an easy to
use, vet accurate method for assessing the significance of crack-like defects in
structural parts.
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