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ABSTRACT After a brief reference to certain aspects of the flow theory of plasticity with
work-hardening, the equation is supplied which expresses the work done by internal forces
during an arbitrary deformation process. The crack extension energy rate and the J-integral are
then defined in a way which is appropriate for elastic-plastic cracked bodies and a number of
their properties are established,

Introduction

Preliminaries

Bold-face lower case letters indicate vectors in R2; upper case letters indicate
second-order tensors (that is, linear transformations of R? into R2), Using 4 to
denote a second order tensor, A" is the transpose of 4 and 4, = A — (tr A)I,
with tr being the trace and I, the identity tensor, is the traceless part of A. Sym
is the collection of all second-order symmetric tensors and Sym,, is the collec-
tion of all the traceless elements of Sym. Sym can be made into an inner
product space by defining A4-B=1tr(4dB), for 4, BeSym. We write
I Al = (A - 4)7 for the modulus of 4.

In the case of hyperelastic materials, the crack extension energy rate G, that
is, the rate of energy absorbed at the crack tip during crack extension, is called
the energy relcase rate. In linear elastic cracked solids, in conditions of plane
stress or plane sirain, ¢ was evaluated, over a period of time, on the basis of
the stress intensity factor (1) and subsequently by calculating the J-integral,
formulated by Rice in 1968 (2), which makes it possible to also assess G in
non-linear elastic materijals.

If body 44 is hyperelastic we put (3)

d
Gy = — — Gda—i-f Ty -u ds {1)
dl Jg ”

where [, ¢, T, v, and u are the crack length, the strain-energy density, the
Cauchy stress, the outward unit normal to é# and the displacement field,
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respectively. Moreover, if v is a path around the tip, that is, a smooth non-
intersecting path that begins and ends on the crack and surrounds the tip
(Fig. 2}, the quantity

Jiy)=e - J(O’I — Va'T)n ds (2)

where ¢, I, and n are the direction of propagation of the crack, the identity
tensor, and the outward unit normal on v, respectively, is the J-integral corre-
sponding to curve y. The tensor {¢f — Va"T) is called the energy momentum
tensor.

If the bedy is homogeneous and subject to quasi-static deformations in the
absence of body forces, we have (4)

div (6 — Vu'T) =0 3)

This result proves to be particularly useful when G needs to be calculated for a
two-dimensional body with a straight crack. As is well known (3}, in this case
we have

G = JG) | )

for each path y around the tip.

In (3) and (6) a definition is given of the J-integral for elasticplastic
materials described by a flow theory of plasticity, which uses the work done by
internal forces (stress work density) as a substitute for strain-energy density.
What is being discussed, then, is the relevance of J defined in this way as a
fracture parameter.

The present paper examines elastic-plastic hardening materials described by
a flow theory of plasticity which satisfy the classic von Mises criterion. For
these materials, we supply the equation which expresses the work W(t) done
by internal forces up to time 7 during any deformation process £, as a function
of the current value of deformation E(z), plastic deformation E®(7), and the
Qdqgvist parameter (1),

Welt) = WE(), E°), () (5)
Therefore, we put
G(l)m—wg wda+J‘Tv-u’ds (6)
dl = L]

for the crack extension energy rate, and we determine conditions under which
it is possible to prove the relation

G()=lim e - j (wn — Vu"Thn) ds N
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Subsequently, as in the case of hyperelastic bodies, we put
Jy)=e- Jv(wl — Vu*T)n ds ®
¥
for the J-integral and we prove that

Gh=Jd(y) —e- J- div (wl — Vu'T) da )]

where y is any path around the tip and . is the intersection between %,, the
region of the body in which plastification has taken place and the region
bounded by y. As is well known, for steady-state growth in ideally-plastic
solids the right-hand side of (7) vanishes (12), (13}; however, numerical calcu-
lation of G for elastic—plastic hardening solids is made considerably easier by
knowledge of equation (5).

Lastly, it is proved that, where the deformation process in each point of &,
is straight and monotonous, we get div(wl — Vu'T) =0, and from (9) we
obtain an equation that is very similar to (4), valid for hyperelastic materials.
This is direct proof of the well-known fact that equation (4) also applies to
materials described by the deformation theory of plasticity.

In the present paper we confine ourselves to considering two-dimensional
bodies; the extension of certain results to three-dimensional problems can be
obtained by means of a procedure similar to that followed in (6} and (7).

When putting forward hypotheses and deducing properties of the crack
extension energy rate, we shall refer continuously to (3), even though in the
present paper certain intermediate results proved in {3) are, for the sake of
simplicity, assumed as hypotheses.

Constitutive hypotheses

In this section, for the reader’s convenience, we shall briefly present, in axio-
matic form, certain elements of the flow theory of infinitesimal plasticity
which, as shown in (8}, can be deduced from a general theory of materials with
elastic range on the assumption, accepted in the present paper, that the dis-
placement gradient from a fixed reference configuration is small. We shall
begin with a number of indispensable definitions.

A deformation process or, more briefly, a history of duration 7 is a contin-
uous and continuously piecewise differentiable mapping, defined on the closed
real interval [0, T] with values in Sym,

E:[0,7] - Sym, 1t E@ (10)
such that '
E0y=0 (11)
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Value E(r) at instant 7 of a history E is interpreted as the infinitesimal defor-
mation, that is, the symmetrical part of the displacement gradient, starting
from a fixed reference configuration, in a fixed material point. At each instant
7 in which E is differentiable, £ represents the value of the derivative of £ at
instant 1; for each © for which £ is discontinuous we shall indicate the right-
hand derivative as E. All deformation processes are thought to begin at some
fixed initial state.

The materials being considered here are elastic—plastic isotropic solids
whose mechanical response to deformation processes is described by a frame-
indifferent and rate-independent constitutive functional. For each history E we
use Ty{7) to denote the stress at time T associated with history E by the consti-
tutive functional.

The kind of constitutive response is further specified by the notion of elastic
range and plastic histoery.

Elastic range & (1) at time 7 corresponding to history £ is the closure of an
arcwise comnected open subset of Sym, whose boundary is attainable from
interior points only; it contains E(r) and its points are interpreted as the infini-
tesimal deformations from the reference configuration to configurations which
are elastically accessible from the current configuration.

Plastic history EP corresponding to E is the history such that, for each
7 € [0,7], B¥() is a traceless tensor, belongs to &g{t) and corresponds to an
unstressed configuration,

1t is then supposed there exist two material constants A and g such that, if E
and £P are a history and the corresponding plastic history, respectively, we
have, for each t = [0, 7],

Tolr) = TTE() — E*(x)] = 2u(Ex) — Er(m)) + (A tr Bl (12)

Relation (12) reflects the classical hypothesis that the stress response to a
purely elastic strain from the unstressed configuration reached after unloading
at the current instant 7 is both unaffected by the past deformation process and
completely determined by E(z) and E°(7).

For each history E and for each 7 € [0, 7]

(afe) = f B dv 13)

is the length of the path described up to instant 7 by the plastic deformation
tensor in Sym,,. { is called the Odguist parameter.

In view of the applications we have in mind, we accept the von Mises
criterion, That is to say, we suppose that for each history E and for each
1 € [0, 7] the corresponding elastic domain is the cylinder

F(t) = {E e Sym/|| B, — o)} < p(l(e))} (14)
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where

i) p: R* > R* is a differentiable, non-decreasing function that depends on
the material but is independent from the history;

(i) for each history £, Cj is a history which takes its values in Sym,

Moreover, in order to take the Bauschinger effect into account, we accept
the classic kinematic hardening rule proposed by Melan (9). That is to say, we
suppose there exists a non-negative constant n such that for each history E
and for each v € [0, 7] we have

Cu(r) = (1 + n)Er(x) (15)

In particular, a material for which p is a constant function and for which we
have 5 = 0 is called ideally plastic,

The set of constitutive hypotheses is completed by the flow rule which states
that, when EP(7) is different from zero, it is parallel to Ng(7), the outward unit
normal on the elastic range at £{z),

EP(r) = (p@Ne(n), M) = Do(e()] ™ (E(7) — Celc)) (16)
As proved in {(8), for the evolution of { we have the following equation
0 if || E(r)o — Col0)ll < p(Ls(c)
)= 0 if | E(t)y — Celt)ll = p({x(x)) and Ny(t) - E(t)o <0 an
[1+ 7+ LN Nf) - Er)o

if [£(c)e — Cy(0)l = p(Le(r) and Ng(r) - E(x)s > 0.

where we put p' = dp/d{. When one of the first two cases contemplated in the
right-hand side of {17) occurs, the material behaves elastically; the third case is
known as the plastic loading condition.

For each history £ and for each 1 € [0, 7], Te{7) - E{7) is the stress power
and thus the work done by internal forces in the deformation process £ up to
time T, is

Weln) = f TTE('.:’) - E(r) dt’ (18)

With the following proposition a relation is proved that, gor egch history E
and for each time t € [0, 7], expresses Wy(7) as a function of E(r), E*z), and {(7)
(10).

Proposition 2.1

For each history E and for each 7 e [0, 7] we have
We(t) = HEE) — E7() - T[E(R) — EX@)] + pnl B @) + 2u0(lu(e)) (19)

where  is the primitive of p such that @(0) =0
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Proof

Remembering that the plastic deformation is traceless, we deduce from (18)
and (12) that

We(t) = f ) - B@) de = jIE{r') - T[E() — EP(e")] dv’
(1]

0

= J:{(E(f’) — ER(@) - TLE(T) — EP()] + EX(v) - TLE() — EP()]} dv'

= ${(Ex) — 7)) - TLE(R) — Ex(@)TT5+ LIZﬂ(E(T’) — Er@) - ER(r) d7'

Moreover, from (15}, (16), and (17) we obtain

f Q) — B - ER) de’ = f%p(cﬁ(r’))ﬁﬁ(r') - E(r') dt’

o ]
+ J;ZME"(T') - EP(7) dt' = [2peCe(r)) + pn) EXE)IPT

The desired result now follows from the fact that we have E(0) = EP(0) = 0,

of{x(0)) = 0.

Prelimirary assumptions

In this section we propose to extend certain results of fracture mechanics,
which are well known in the case of hyperelastic materials, to elastic—-plastic
problems (3).

Let # be a regular homogeneous two-dimensional elastic—plastic body
whose mechanical response to deformation processes is described by the con-
stitutive equations (12)«17). Let us identify & with the particular region of R?
occupied by the body in the reference configuration. Let us consider a motion
of 4 which takes place in the time interval {0, ¥, and for each x € # let us use
E_ and E? to indicate the deformation process and the corresponding plastic
deformation process at point x, respectively.

Let us suppose # contains an edge crack, represented at every instant t by
the image of a smooth non-intersecting curve,

20 [0, 1] = Bae Zy(0) 20)

parametrized by arc length « (Fig. 1). The length [ = I(z) of curve §, is a non-
decreasing function of time t during the motion of &, and if [, is greater than
11, %1, is a continuation of 7.

Let us use #({) to indicate the image of path §;,

#(l) = {x € B/x = F(w)x € [0, [T} _ (21)
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Fig 1 Edge crack
£,0) and F(0) represent the intersection of the crack with the boundary 3% of
4 and the tip of the crack, respectively, while

(o) = dfpy/do (22)

denotes the unit vector field tangent to the crack.

Let us suppose there exists a time interval [1q, 7,] < [0, 7] such that we get
lzy) > 0 and di/dr > 0 for t e [14,71,]; ! restricted to this interval is an
increasing function of the time and can therefore be used as a time scale. For
lefly, 1] with I, = l(z,), ; = i(z,), the crack tip advances without stopping in
direction e(f),

For each le[l;,!;] and for each small & > 0, Z,(I) denotes the disc of
radius & centred at the crack tip and %,{l) = # — @4()) is the complement of
2 1) with respect to 4. v, and # are the outward unit normal to 2 and 32,,
respectively (Fig. 1). For x € # and ! € [l,, !,], we use u(x, [} to indicate the
displacement field with respect to the reference configuration and put

E(x,) = Efr), Fx, )= E) 23)
T(x, [) = TLE(x, ) — E"(x, ] (24)
(e, ) = L D) (25)
wix, [} = Wwg (1) (26)

where ¢ and # are the functions defined by (13) and (18), respectively, and
where [ = I(7).

Let ¢{x, 1), with x ¢ # and I € [1, 1], be a smooth field. We put ¢' = d¢/dL
Moreover, if ¢(x, ) is a scalar or vector field, V¢ denotes the gradient of ¢
with respect to x; if ¢ is a vector or tensor field, div ¢ indicates the divergence
of ¢.

Let us now go on to list certain properties. At this point it may be worth-
while noting that properties I3 and 14 below, which are simply postulated
here, could be deduced by means of the same procedures as those followed in
(3), from hypotheses of regularity on fields », w, and T similar to those put
forward in that paper.
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Let us take x € 4 and lefl;, [,].

I1 Fields w{x, ) and EP(x, §), {(x,]) are of class C* and C' on set & — €(I),
respectively. Moreover, u(x, I}, E®(x, ), {(x, I), and their derivatives are con-
tinuous up to the crack from either side, except at the tip,

I2 Function w{x, [} defined by relation (26) and its derivative with respect to !
are integrable on 4.

13 [4w(x, I} dais differentiable with respect to / and

d d
Iim — | wx, da=—1{ wx,]) da; 27
M)dl‘%(l) dlg,,(l) @7
14 We have
Hm J‘ Tn- o ds= —lime- J Vu'Tn ds (28
d+0 J0@s d—+0 aD;

I5 Function div (wl — Vu'T) is integrable on 4.
16 # undergoes quasi-static deformations alone, in the absence of body
forces and therefore

div T(x,) =0 (29)

I7 The crack faces are traction-free.

Remark

In view of I1, E = $(Vu + Va™) and EP are of class C! on 4 — %(}) and, there-
fore, from (12) and (24) it follows that T is also of the same class. In the same
way, w is of class C* on & — (], iu view of (19), (25) and 11.

The crack extension energy rate

If, in a certain interval of time, there is no propagation of the crack, in view of
{18) and (26) the theorem of power expended (11) tells us that

_ 9 wda+j Tv-itds=0 (30
dr Jg ]

In the interval [1;, [;], where the crack advances, it is necessary to include

crack extension energy rate G(J) in the balance equation. In the case of hyper-

clastic bodies, G(i} is called the energy release rate, and is defined by equation

(1). In the case of elastic-plastic materials, in view of (30), as a generalization of

{1) we put

G{l):—g wda+ij'u’ds (31
dl |z -
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Foreachle[l,,[]

j G(¢) d¢
I

0

is interpreted here as the work per unit thickness needed to increase the length
of the crack from I to L

The following proposition supplies an expression for G{f} which is formally
similar to that to be found in the case of hyperelastic bodies (see (3) equation

(4.6)).
Proposition 4.1
Foreach !l e {l,, ]
G() = lim e(f) * j (wn — Vu'Tn) ds (32)
D

&§—0

Proof
From (18} and (29) we deduce

W=T- E=T-Va=div(Tw)—w - div T = div (T#)

Applying the divergence theorem to set &, , and bearing 17 in mind, we have

J\w’daSJ\TV'u’dsAj Tr-u ds (33)
Bs OB 8B
The transport theorem (11) states that, for § > 0,
d wda:J.w’daue'J‘ wa ds (34
d[ B Ba 025
and therefore from (33) it can be deduced that
_d wda+ij-u’ds=j (e-wn+ Tn-u)ds {(35)
dl B 5 LS P

The desired conclusion now follows from I3, ¥4 and (31).

A curve v is called a path around the tip if it is a smooth non-intersecting
path that starts and ends on the crack and includes the tip of the crack
(Fig. 2). Let y be a path around the tip and » the outward unit normal on y.
The quantity

Jy=e- j(wn — VutTr) ds (36)

is called the J-integral for the pathy.

In the same way as in the case of hyperelastic materials (see (3) equation
{(5.2)), we have the following, in view of (32} and (30), '

G{h) = Him J(6%;) (37

=0
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Fig 2 Path around the tip

Foreach | e [I, ;] let
Bl = 1x € B{(x, 1) # 0}, (38)

with {(x, I} defined by (25), be the set of points of & in which plastic deforma-
tions have taken place. Let us call #,(J) the plastic region; moreover, it should
be noted that #,(l), in general, does not coincide with the subset of # in which
we have EP(x, [} # 0.

For each path y around the tip, let # be the subset of # enclosed by y and
let & = # n %, be the intersection of # and 4, (Fig. 3).

Proposition 4.2

If the crack is straight, for each path y around the tip we have

GH=Jy) —e- J- div (wl — V&' T) da (39)

Proof

Let & > 0 be small enough for path y to include 2, and let # ; be the subset of
# bounded by 7, %, and the two faces of the crack. Taking I7 into account
and bearing in mind that the crack is straight, the divergence theorem applied

£

Fig 3 Plastic region
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to region &, tells us that

J(6D,) = Jiy) — e - J div (wl — V&*T) da (40)

Fa

On the other hand, at all the points x not belonging to %,, w(x, ]) coincides
with the strain-energy density and therefore, as proved in (4), at such points
we have div (wl — Vu'T) = 0. Given, then, that

a{éj&:ﬁangg

we obtain the following from (40)

J(@D;) = Jy)— e~ j div (wl — Vu'T) da (41)

s

The desired conclusion is obtained by taking the limit for § — 0 in equation
(41), bearing (37) and 15 in mind.

If, for some { € [I,,{,], the distance between #,(I) and &4 is positive, there
exist paths around the tip that include Z(J). If y is one of these particular
paths around the tip, # contains %, and it therefore follows from (39) that

G(l) = Jy) — e * j div (wl — Va'T) da (42)
ael}

Moreover, since y does not intersect with 4,, in view of (19) J{(y) can be calcu-
lated, rather than from {36), from (2} as in the case of hyperelastic materials.

If for some x € & and ! e [1,, [,] we have {(x, ) = 0, in view of (13} and (19)
w(x, ) coincides with the strain-energy density and so (4)

div (w(x, DI — Va*(x, DT(x, ) =0 (43)

With the following proposition it is proved that, even for x € %, there exists a
particular circumstance in which equation (43) holds.

Proposition 4.3
If for x e ALl
IE?(x, Dl = {lx, D and  Eylx, ) = Clx, ) + (p(O/DERx, ]) (44)

then equation (43) holds,

As can be deduced from the constitutive equations (13}{17), condition (44)
is satisfied if, in particular, at point x the deformation process E, is pro-
portional and monotonous. That is to say, if there exists a symmetrical tensor
E? with | E?|| = 1, such that

E(7) = [|E(YE® for each ¢’ € [0, T}

where || £ ()| is a non-decreasing function of 7',
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Proof

Let us put
Y() = HE@ — EP) - TIER) — EP(0)] + pyl EX(0))2

from (19) we deduce

div (wh) = V(¥ + 2ue(()) = Vi + 2up(HV{ (45)

If a is any vector of R?, in view of (20) we havet
a-Viff = 2u(E — EP) - §(E — EP)[a] 4 2unEP - EP[a]
+ (A tr E) - E — EP)[a]

=T - 0(E — E°)la] + 2unE? - 8EP[d] (46)
Moreover, from (44) it follows that
2up(Q)VT ~ @) = 2up((NEP/| EP|[) - OE"[a] _ D)
Equations (45), {46), (47), (44), (12) and the fact that EP is a traceless tensor
imply
a-div(wh)=T - dE — EP)al + 2uln + p({)/{)E" - DE"[a]

T - E— E¥[e] + T, - dE[a]
=T HE—E"[a]l+ T-0E°[a]l =T - JE[a] (48)
On the other hand, bearing (29) and the symmetry of T' in mind, we have
a - div (Vu"T) = div (TVua) = T - V(Vua)
=T - (0Vula]) = T - 0E[a)] (49)

The desired conclusion is now a direct consequence of (48) and (49).
Propositions 4.2 and 4.3 imply the following corollary,

Corollary 4.1

If the crack is straight and for each x € #,()) condition (44) is verified we have
G =J& (50

for each path y around the tip.
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T If A: # — Sym is a tensor field on 4, x is a point of # and a € R? is a vector, we put

dA(x)fa] = lim ¢~ Y{A(x + sa) — A(x)).
£=0
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