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ABSTRACT Presented is an analysis of the early stage of the fracture process in a crystalline
solid — the nucleation and development of dislocational cracks. For description of the fracture
precursors’ evolution, the improved discrete-continuum model of Stroh-type dislocational
pile-up has been worked out. The investigation of peculiarities of dislocations interaction at
short distances in the stress field showed that microcrack nucleation and growth result from the
equilibrium stability loss at the pile-up head and further joining of leading dislocations there.
The criteria of microcrack nucleation and growth are derived accounting for the role of both
shear and fensile stresses. On this basis the macrocriterion of fracture at 2 point of an etasto-
plastic solid was derived in terms of values of plastic strain, maximum normal, and shear
stresses which comprise some microstructural characteristics of the material. Discussed is the
transition from the stress-controlled fracture to the strain-controlled one, as well as the pre-
reguisites of ductile (brittle) behaviour depending on the stress state triaxiality and material
microstructural peculiarities.

Entroduction

Plastic strain in crystalline solids at a moderate temperature is a prerequisite
of any fracture, including a brittle one. This was suggested first by Stepanov
(1), and later experimentally confirmed and theoretically developed in numer-
ous works in the field of physics of materials strength. The dislocational nature
of the process of (micro)plastic deformation-and-fracture has been proved, It
was found, e.g., (2), that formation and behaviour of the groups of the same-
sign excess dislocations — dislocational pile-ups — determine nucleation and
development of microfractures — dislocational cracks, Before being completed
the process may pass through a number of subsequent stages: formation of
blunt structural cracks, formation of pores, etc. (2). Depending on the length
of the chain of stages required for fracture completion under the given condi-
tions, it will be more brittle or ductile. In this case continunation (completion)
of a rupture to a great degree depends on conditions providing accomplish-
ment of the initial event — dislocational crack formation. For their analysis, the
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improved microfracture model is developed; it describes both nucleation and
growth of microcracks within a unique framework. The criteria of microcrack
nucleation and spreading are obtained here naturally, ie,, without any addi-
tional condition, from only the analysis of the pile-up equilibrium stability in
the stress field,

Meodel of dislocational crack nucleation and growth

The mode! described below is the result of combining the two approaches of
the physics of fracture developed earlier: discrete-continuum modelling of dis-
locational pile-ups and models of atomistic cohesive forces for the description
of defects in solids (3)(5). '

Dislocational pile-up model

Considered is a pile-up of n edge dislocations with Burgers vector b (Fig. 1).
Stresses in the pile-up vicinity, both shear 7,, = 7, and normal to the plane of
the expected cleavage o,, = ¢, are determined by the solid macroscopic stress
field. Stress 7, pushes the pile-up to the obstacle located in the plane x = 0.

In this pile-up with the total Burgers vector B = nb, its leading element B,
and dislocation B, following it are singled out and described individually,
while the remainder part of the pile-up B, = B — B, — B, is considered to be
continuous. The cores of elements B, and B, are supposed to be wedge-like
cavities with interacting faces in the elastic continuum similarly to the
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Fig 1 Model of blocked flat pile-up of edge dislocations
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accounting for cohesive forces in the crack tip zones (3). The cores are con-
sidered to be the distributions of infinitesimal ‘cleavage’ dislocations with den-
sities 7;(y) on sections [ —hy, 0] (Fig. 1), for which {2, n(y) dy = B, (j = 1, 2).
The opposite faces of the core of any of the elements B, are attracted by the
forces of inter-plane cohesion in the crystal gj(u;), where the core opening
uly) = j{kjnj{y) dy. The part B; occupying the interval I, I,] of axis Ox is
described by the density p(x) of gliding edge dislocations, and [ip(x) dx = B;.

The equilibrium equations of such dislocational formation comprise (i) equi-
librium equations of cores of elements B; under stresses o,,(x, y)|i—z, =
g, + o (B)+e,(By)(j,k=1,2;j#k; L, =0and L, = L are coordinates of
elements B, and B,; o,(B;) are the stresses produced by ¢lements B, of the
pile-up, 7 =1,2,3); (ii) equilibrium equation of part B; under stress
T, 0) = 7, + 7,,(By) + 1,,(B,); (iii) balance condition for the forces acting in
the slip plane on movable dislocation B,, i.e., as a result

M[ T () dé + J" (€ — P32 + (& —y*}

By T LM T T T

P YB3 =8P 4y
LMW@—W+ﬂ2

Ay [t
M[L £—x a- f=z1:,2 —kjﬂj(f) {x — Lyy* + &737 del=n-n

s

dé}“—”g;(uj)—% Uk=12;j#k (1)

E
Fp,p, + Fgop, — Boft, — 1) =0 (M = m)
where 7; is the lattice friction stress, E is the Young modulus, u is the Poisson
ratio, forces Fyg g, of elements B, and B; interaction (j = 1, 3) are
0
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In order to anmalyse the fracture nucleation and development, the mathe-
matical model of equations (1}43) should be completed by the condition for
limit equilibrium of the pile-up head part. Two ways of the pile-up transfer
into the instability are possible: (I} loss of equilibrium stability of the crack-
itke core of element B, i.e. its progressing opening in the cleavage plane as the
Griffith type crack under the action of stress ,,(0, y), which will occur when

hl(Bls Tyxs gl) ; hc (axx =0, + axx(BZ) + axx(BS)) (4)

Fy, = ML j ¢ dy, 2)

1z ()]
Fyp, =M i p(x) L, 1) dy dx. (3}

where h, is the critical size of B, core; (II) instability of dislocation B, position,
its dropping to B, and their joining leading to the spreading of the wedge-like
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dislocational crack which takes place when the coadition is satisifed
dFg, /L =0 (3)

where Fy, is the total force acting upon the dislocation B, in the glide plane.

The critical combination of the governing parameters of dislocational
pile-up n, 1, 5, corresponding to the microcrack nucleation or propagation at
its head, are determined by the less severe conditions of equations (4) or (5).

The solution of equation (1) in the explicit form is accessible only by
numerical methods in which the obtaining of general conclusions is difficult.
But when B, + B, < B, and, hence, L < I; < I,, the analysis is simplified and
the desired result may be obtained approximately in the closed form (6). In
this case when considering the structure of each element B, (k = 1, 2, 3) of the
pile-up, the action of elements B, (j #k, j=1,2) is accounted for in the
approximation of the long-range elastic field, ie., it is accepted that #,(y) =
B, &(y) where d(y) is the Dirac delta-function. Then the first three equations of
the equation system (1) become independent singular integral equations. Their
solution by the generally known Muskhelishvili method resuits in functions
which determine the configurations of the leading elements B, and B, (6)
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where values S, =3B M/I?, S, =3M(B, + B,)/(813) reflect the effect of
normal stresses ¢ (B,) and o,,(B;) upon the structure of element B;.

Microcrack nucleation

At this stage of the process both leading elements of the pile-up are still the
ordinary lattice dislocations, i.e., B; = B, = b. The structure of their cores is
determined by the identical densities of the cleavage dislocations, due to which
the indices in designations of densities 5(y), lengths of cores h, etc., are omitted
here,

The following approach, used before in analysing the cracks (3), continues
the parallelism inherent to the description of dislocations and cracks (4)(5).
The non-linear law of the interplane cohesion in the crystal is replaced by the
‘force-displacement’ dependence with the initial linear part reaching the
maximum g, of the real interaction curve, ie., the theoretical strength in the
given cleavage plane, while the interaction corresponding to the cohesive
forces diminishing in the core region —h < y < 0 is specified in parametric
form by the linear relation (for the scales of atomistic sizes it ought not to be
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looked for the physical grounds) g{u(v)} = go + (9, — go)y/h, where the core
characteristic g, = g(4)|,—o may be found, for example, from the data on the
energy of the core of given crystallography.

Now equation {6) completely determines the structure of the dislocation
cores in the stress field inherent to the region of the pile-up head. The core size
is found from the condition of the finiteness of stresses at their ends y = —h,
which is equivalent, as it is known (3), to the condition #(- h) = 0, from which
via equation {6) we obtain

- 1 '\/{1 - 3hg(S2 + Ss)/(sz}
N 3ho(S, + S,)/(4bM)

h G
where b, = 2bM/{3g,./4) + (go/4) — o, } is the core size with the pile-up absent.
The latter agrees with the known evaluations of the more adequate micro-
scopic models (Z}(7).

Equation (7) shows that under the action of stresses caused by the pile-up
the size of the cores of its leading dislocations h may grow up to the limit
value h, = 2h,. At 3R3(S, + S2)/(2bM) > 1 there are no real values of the equi-
librium size ki, which means the instability of the dislocation core and its trans-
formation into the spreading crack (type I instahility). The condition of
equation (4) takes the form

hz2hy or 3h3S, + Sy)/2bM) = 1 )

and up to its fulfilment h/L < h/L, = /{8{1 — 3h3S,/(2bM)}1/3 < 1, where L,
determines the position of dislocation B, when reaching the type I instability.
To determine the condition of the type II instability let us consider the
interaction of dislocations B, and B, . For the alternative to the condition of
equation (8), we shall deal later only with the region L > h,, ie, h < h, and

h/L < 1.
Using equations (2) and (6) we obtain
Mb?
Fom, = A [1 - "%} + 079, 9

where { = L/h, > 1, ¥} = [M{)/h.]*. This result agrees with the lattice (7) and
‘quasi-atomistic’ {4) physical models.

Here important is the fact that the force of dislocation interaction comprises
the component of mutual attraction caused by the interaction of their cores.
This component becomes essential at short distances between them. Its pre-
sence allows for the possibility of positional instability of dislocation B, at the
pile-up head.

From equation (9) it can be determined that in the region considered, { =
{, = L./h,, the force Fy, 3.({) reaches the maximum FR75 at{={ =L_/h.,
and then at { » {, it changes as {~" oc ™' (Fig. 2). The behaviour of Fy,g,({)
depends on the parameter A = 3k S,/(2bM), i.e, on the pile-up capacity and
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Fig 2 Interaction (repulsive) force of pile-up leading elements B, and B, separated by distance L:
breker line — the known dependence of the continnum dislocations theory of type Fy 5, =
MB,B,[L; solid lines — result of equation (9) which accounts for the interaction of dis-
location cores degending on external stresses and those produced by the remainder part of
pile-up (A = Ao, 0, (B, 1)}, A’ < A7)

external stresses. Solution of the equation éFy 5,/00 = 0 gives (6)
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The result of equation (11) is very close to the one (4) obtained for the case
of n =2 and ¢ =0 with the physically more exact model of the core. This
means that the model of the cohesive forces is a sufficiently good approx-
imation for description of the dislocation cores.

The critical combination of the parameters n, 7, and o,, corresponding to
the breakdown of the B, dislocation position stability, is determined from the

{m = Cc{l + (10)
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equations system formed by the latter equation from equation (1) together
with equation (5). The analysis showed (6) that with a small error, the solution
of equation (5), i.e, the position of the B, dislocation unstable equilibrium, is
determined by the value L = L (or { ={,). When the pile-up leading dis-
locations are pushed together by such a distance, the dislocation B, falls to B,
and the formation of a superdislocation with Burgers vector 2b occurs. At least
for the BCC metals (2) the core of such a dislocation forms a cavity with
non-interacting faces, i.e., an embryonic microcrack. As it follows from equa-
tion (10), always L, > L_ ({, > {}, ie, the type II instability at the pile-up
head occurs before the condition for the type I instability can be satisfied.
Thus, it is the joining of two leading dislocations at the pile-up head that
determines the criterion for the dislocational crack nucleation.

The explicit form of this criterion is rather complicated. But for the region
of possible occurrence of type 11 instability, when type I instability is wittingly
inaccessible, in accordance with equation (8) it will be A < 1/(1 + §,/8,) < 1/2.
Then the components of force Fy, at { = { may be presented in the form of a
power series expansion with respect to the small parameter A. Retaining in the
expansion the terms not higher than the linear ones, we obtain the criterion of
the microcrack nucleation at the head of the blocked dislocations pile-up (6)

n(?’-l - ti) = 0308(9:: o G-n) (g;; = %gm + EIEQO = V4w, V £ 1) (12)

Note that this criterion associates the fracture nucleation with cohesion in a
specific cleavage plane which may be a grain boundary weakened by impu-
rities. The obtained condition proves to be noticeably less severe than the
initial Stroh criterion and its further refinements (2)(4).

Dislocational crack growth

This stage of the pile-up evolution differs from the above by the fact that its
leading element now will be a wedge-like dislocational crack — super-
dislocation B, > 2b with non-interacting faces. Here we shall follow the con-
ventional method of describing the cracks with small tip zones (3) and
introduce an integral characteristic — the work of cleavage fracture y =
1 [7g(u) du. Then g,(u,} in the model equations is omitted and the dis-
locational crack shape is imposed by the condition known in the theory of
cracks (3), in our case this condition will take the form

fim y + hom0) = > \/ (%) (13)

y—=~ht

This mathematically differentiates the problem of the crack growth at the
pile-up head from the previous one.

Interaction of the embryon crack B, with the remainder part of the pile-up
was studied (6) in the approximation of the long-range stress ficld, ie,
assuming 1,(y) = b 8(y) (further for element B, index ‘1’ in designations of its
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characteristics is omitted). Such formulation of the problem of interaction
between the microcrack and pile-up is close to that described in (2), but it is a
more general one.

Equations (6) and (13) lead to the equation for the size of the dislocational
crack

3(S, + S)h% + 4o, h — 16,/(My)h'? + 8B/M =0 (14)

Its accurate solution is difficult. But from the analysis of the conditions for
existence of its real roots it is possible to find the limit size h, of a stable
microcrack in the stress field

h, = 1 {z- \/(IMBIU")}Z (Bi”“g) (15)
[ Y ¥

This gives a more definite solution to the condition of type I instability, equa-
tion (4). The analysis (6) showed that for the range of the possible type II
instability at the head of the pile-up resting upon the crack we may approx-
mmately accept

1= /{1 = 3hX(S, + 5,)/8B, M)}
- 31{S, + S2)/(8B,M)

h (16)

Further the microcrack and pile-up interaction are considered similarly to that
described above.

In accordance with equations (2}, (6), (16) we find approximately {6)

MbB, g x0 _s
b [1EK¢—2]+0(«: ) 17

FB]BZ -

where, the same as before, { = L/h, > 1, x({) = {h({)/h,}* and « = 4y{1 — /(1
- Byo,/7)}/(Byo,). Thus, we have a result similar to the previous section.
Repeating the calculations described above and ignoring the terms with higher
powers of the small parameter be,/y < 1 {this non-equality is troken down
with such a large o,,, that the dislocational crack with B, = 2b will be unstable
even in the absence of a pile-up), the condition of the next dislocation to drop
into the embryon crack at B, = 2b is found approximately in the form (6)

nit, — 1) = 3.35(y/b - 1.500,) (18)

The known results (2} allow to suppose that the critical stage of the dis-
locational crack growth is the pushing in of the next dislocation into the frac-
ture embryon formed by joining of the first two ones. After this there comes
the instability of the pile-up as a whole and its drop into the spreading micro-
crack, probably, up to the complete exhaustion of the pile-up. Then equation
(18) presents the criterion for dislocational crack growth at the pile-up head.
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Fracture of elasto—plastic solids: criterion and conditions of stress/strain
controlled fracture

The microfracture model opens the way to build up the fracture criterion at a
given material point in terms of the state macroparameters (stresses and
strains) and some microstructural characteristics of the material, as well as for
the analysis of the factors influencing the fracture mode and limit state of
clasto-plastic solids.

Fracture criterion at a material point
We shall use the simplest method of building up the physical (structural)
macromodels of the processes in solids. We consider that the active dis-
locations are localised in groups arranged in slip lines, the mean spacing of
which is h,. The initial number of dislocations in groups s, = wpq h,, where p,
is the initial density of dislocations in the material, factor w is determined by
the number of slip systems and the fraction of movable dislocations. Just at
the stage of macro-elastic deformation, but when in any slip system t,, > 1,
such groups can form blocked pile-ups. In the region of macroplastic straining
the value of plastic shear strain in the system under consideration 5 =
[u]/h,, where [u,] = n'b is the value of the plastic shear (displacement u, dis-
continuity when passing over the line y = 0) produced by passing of »' dis-
locations. Then the capacities of the possible pile-ups — incomplete slips will

" reach the value n=ny+ [u]/b=n,+ h,y8/b. The fracture event at a

material point is assumed to be completed when for the most unfavourable
system of glide-and-cleavage planes a more severe condition among those in
equations (12) and (18) will be satistied, ie., when the complete breakdown of
equilibrium stability of any fracture precursor at a material point will occur
and the pile-up will turn into a dislocational crack. The fracture criterion at
the elasto—plastic solid macropeint is presented in ferms of the maximum
values of plastic shear strain y&,, , shear ™ and normal o™ stresses

(Ep0 + Vaad(T™ — T)/f = 6(gp, o7™)

(6,0 = wPob; §=bjh; &=max {0.308(g% — 0=°); 3.35(/b — 1.5a2})
(19)

Here h, or ‘quantum’ of plastic shear strain § (when b is the ‘quantum’ of
shear) reflects the dislocational inhomogeneity (micro-localisation) of plasti-
city. The form of equation {19) will be a little changed if the criterion is rewrit-
ten in terms of the macroscopic equivalent plastic strain efy and principal
stresses o, > 0, > 0.

Analysis of fracture behaviour
Dependihg on the value of the material microstructural characteristics ¢,, and
4 the generally known phenomenological criteria of the maximum stress or
critical strain may be obtained as the extreme cases of equation (19). Thus, e.g.,
equation (19) is reduced to the stress-type criterion at small § and non-small
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{moderate} ¢, such that e,,/f > 1 and #8L/e,, < 1. The latter does not mean
that the plastic deformation at rupture is obligatorily vanishingly small here,
but as a particular case it is possible to fulfil the criterion at gfy = 0. At smaller
€,0/7 the failure will need the increased (or large) plastic strain and the cri-
terion will become a strain-type one.

The above refers to the invariable triaxiality of the stress state. Since equa-
tion (19) comprises both normal and shear stresses, the critical combination of
the point mechanical state parameters &2}, 7™, ¢™™ will also depend upon the
stress state shape: the higher is the stress triaxiality, the lower is the fracture
strain, i.e. a more brittle fracture will be observed macroscopically (Fig. 3). But
this is only one aspect of the ductile/brittle behaviour — macro-manifestation
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Fig 3 Fracture criteria in terms of micro- and macrovariables (parameters of pile-up and charac-
teristics of stress—strain state and micrestructure): broken lines — criteria of nucleation (1)
and growth (2) of dislocational cracks, equation (12} ané equation (18); solid lite — criterion
of instability of pile-up as a whole and of cleavage fracture completion at a material point,
governed by dislocational cracks development, equation (19). Lines with arrows show the
loading paths at the material point depending on the parameter of stresses triaxiality 4 =
o365y, whose values are 4’ < 1" < A; horizontal line separates the region of the macroscopi-
cally elastic stage from the elasto—plastic ene which comes when the macroscopic yield stress
Ty is exceeded. In the space of material point siate macroparameters the upper dash—dot line
corresponds to foll completion of rupture when the process is not limited to the stage of

dislocational microcrack growth but is transferred into the region governed by the growth of
microvoids,
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which is not associated with variation of the fracture micromechanism by
quasi-clcavage.

The second aspect will be found when the interrelation between the dis-
locational crack nucleation and growth is considered, Using the approximate
relations — Orovan’s formula g2 = Ey/b and the estimation for the BCC iron
g = Q.18F (see Ref. (8)) — we shall obtain the microfracture criteria curves
corresponding to equation (12) and equation (18) as it is shown in Fig. 3.
Respective to their mutual arrangement in the plane of the governing param-
eters the regions of fracture governed by growth or nucleation of microcracks
are separated, the boundary between them being is determined by stress 65™.
For steels o5 = 2600 MPa. In smooth tensile specimens even for high-
strength steels the stresses do not obviously reach 2000 MPa. Here the frac-
ture nuclei growth does not follow spontaneously their formation, ie., the
pile-ups equilibrium stability is kept and the fracture completion requires con-
tinuation of the plastic straining. In this case the dislocations density is
increased as well as the probability of the opposite pile-up presence on the
microcrack path. The latter leads to the premature transformation of the
microcrack into a microvoid. The stage of the disloctional cracks (of quasi-
cleavage type) development does not lead to completion of the rupture which
is transferred to another microstructural level of ductile fracture by microvoid
coalescence. Then the rupture completion requires the additional plastic strain
for realisation of the further process stages. It will be another way, e.g., in
fracture of solids with stress concentrators — notches or macrocracks — where
tensile stresses even in steels of medium strength may exceed the value o5/
Here more severe is the condition of microcracks nucleation, which, having
just emerged, will spontancously spread absorbing the pile-ups which have
produced them. This will take place against the background of still relatively
low dislocations density and, hence, at a lower probability of the crack blunt-
ing due to its intersection with a group of opposite-sign dislocations. Then the
embryo crack propagation by cleavage will be wider, i.e. the fraction of quasi-
cleavage will be higher and the fracture will be more brittle.

We hope the present paper has shown a more complete understanding of
the prerequisites for ductile/brittle transitions will be achieved as a result of
the analysis of elementary physical mechanisms, and this will help the develop-
ment of quantitative metal science approaches to the creation of more efficient
fracture-resistant microstructures.

Conclusions

An improved theoretical model of dislocational crack nucleation and growth
in solids has been developed. Two leading elements of the Stroh-type blocked
array of edge dislocations were considered individually and the effects of their
cores were taken into account, These cores were treated as wedge-like discon-
tinuities with their faces mutually attracted according to the solid cohesive
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forces law. The equilibrium stability of such a dislocational configuration
under the action of shear stress 7., in the array glide plane and of tensile stress
., in the plane of expected cleavage was analysed. This approach opened the
way for a unified treatment of both stages of the microfracture process — nucle-
ation and growth of distocational cracks.

Two alternative conditions of the equilibrium stability loss at the pile-up
head were analysed; (i) the Griffith type instability of the array head element
(i.e., cleavage of the single lattice dislocation or superdislocation-embryonic
wedge-like crack if it had nucleated) due to tensile stress, and (ii) the positional
instability of neighbouring lattice dislocation resulting in its joining with the
head (super) dislocation. As a result, the nucleation and growth of the micro-
crack was shown to occar by successive joining of the array dislocations at its
head due to attractive short-range core-caused component of the dislocations’
interaction force. Quantitative criteria of microcrack nucleation and growth
were derived in which the role of local cohesive forces in fracture cores and of
both external stresses (shear and tensile) are reflected.

Using the approach of combined micro- and macro-mechanics, the respec-
tive macroscopic fracture criterion in a material point was obtained in terms
of continuum variables of maximum shear and tensile stresses ™ =
(6, — 63)/2 and 6™ =g, and equivalent plastic strain £, where some
mechano-structural characteristics of solids were included. Depending on the
specific values of the latter, the usual phenomenological failure criteria of
maximum stress or critical strain were shown to be the limit cases of the pro-
posed criterion.

The results of the investigation undertaken were apphied to the analysis of
factors governing the transition from stress- to strain-controlled fracture and
from more to less ductile (brittle) behaviour of the given material depending
on its intrinsic properties (cohesion in fracture cores and dislocational pro-
cesses heterogeneity) and stress—strain state (stresses triaxiality) in the solid.
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