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ABSTRACT  The practical engineering significance of short fatigue cracks in aerospace struc-
tures is examined with respect to the design and operating requirements of safety and durability.
It is shown that this significance is presently limited to the safety of some engine parts, notably
discs and blades, and the durability of metallic airframe structures.

Introduction

Short crack growth is the subject of much recent research into fatigue of
metallic materials and composites. The study of short cracks is undoubtedly
important for improved understanding of the fatigue process and development
of materials with better resistance to fatigue. However, the practical engineer-
ing significance of short crack behaviour appears to be limited (1). This will be
illustrated and explained with respect to aerospace structures in the present
paper. To do this, it is first necessary to consider the design and operating
requirements of safety and durability of fatigue-critical aerospace structures.

Safety and durability of fatigue-critical aerospace structures

Structural fatigue design philosophies

Initially the only philosophy for designing against fatigue of aerospace struc-
tures was the safe-life approach, which means designing for a finite service life
during which significant fatigue damage will not occur.

In the 1950s the fail-safe philosophy evolved and was first applied to civil
transport aircraft. The fail-safe approach requires designing for an adequate
service life without significant damage, but also enabling operation beyond the
actual life at which such damage occurs. However, it must be shown that the
damage (cracks or flaws) will be detected by routine inspection before it
propagates to the extent that residual strength falls below a safe level.

Since 1970 the United States Air Force (USAF) has developed the damage
tolerance approach (2). This philosophy differs from the original fail-safe
approach in two major respects:

(1) the possibility of cracks or flaws already in a new structure must be
accounted for;
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(2) structures may be inspectable or non-inspectable in service, i.e. there is o<l 5 o<l 5 <l
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economic life on full-scale and component test results, in particular the
frequent occurrence of cracking. However, analyses are being developed,
notably by the USAF (6)(7), to enable quantifying the economic life at the
design stage. The most advanced analyses are concerned with the widespread
initiation and growth of small cracks at fastener holes in metallic airframe
structures, since such cracks are one of the most common maintenance
problems. The upper limit of crack size that determines durability is defined on
the basis of economic repair, e.g., the largest radial crack that can be cleaned
up by reaming a fastener hole to the next fastener size. This is followed by
installation of an appropriate oversize fastener.

Significance of short fatigue cracks

It must be stated right away that short fatigue cracks have no practical
engineering significance for composite structures now or in the foreseeable
future. The presence of short ‘cracks’ and their growth and coalescence during
fatigue to form macroscopic defects in composites are of fundamental impor-
tance to development of more fatigue resistant composite materials, but there
is no way in which such early damage accumulation may be quantified for
engineering use.

On the other hand, short fatigue cracks are, or may be, practically significant
for metallic structures. As is well known, there is considerable evidence that
short fatigue cracks in metals grow at faster rates and lower nominal AK values
than those predicted from macrocrack growth data (8). These apparent and
unfavourable anomalies are found typically for cracks with governing dimen-
sions less than 0.5 mm. Notable exceptions are cracks in some large grain size
engine materials, e.g., (9).

The practical engineering significance of short fatigue cracks in metallic
aerospace structures is the subject of the remainder of this paper.

Short fatigue cracks and the safety of metallic aerospace structures

Figure 1 gives an overview of the potential relevance and importance of short
fatigue crack growth for the safety of metallic structures. The flow chart logic
takes into account the structural fatigue design categories, non-destructive
inspection (NDI) capabilities, and types of service load histories.

Broadly speaking, short fatigue cracks are potentially significant for safety
only if a sufficiently high level of NDI is feasible, i.e., possible and economically
justifiable. In more detail this means:

(1) For new damage tolerance structures pre-service NDI must be capable of
detecting short cracks or flaws with high reliability. This is a necessary
minimum requirement because in-service NDI usually has lesser
capabilities.
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Fig 1 Short fatigue crack growth and safety of metallic structures
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(2) For safe-life structures audited using damage tolerance principles in- 5 2 B
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Short fatigue cracks and the durability of metallic aerospace structures £

When short cracks are important for safety they are also important for the E» 3 ,_‘.‘;‘ Kl
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As mentioned earlier, the most developed durability analyses concern the N “2*

widespread initiation and growth of small cracks at fastener holes in metallic = 8 *‘5’{ \IJ

airframe structures. The way in which such analyses are done is illustrated SRR ] L~

schematically in Fig. 2. Crack propagation curves are obtained from visual and
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initial fatigue quality and scatter in fatigue life, and these parameters are used
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Fig 2 Schematic of the procedure for the EIFS concept of durability analysis

in assessing the economic life of the airframe. Details of the analysis procedure,
which is quite complex, are given, for example, in (6)(7).

Apart from the complexity of analysis the EIFS approach appears straight-
forward. However, extrapolation to initial crack lengths relies on macrocrack-
based crack growth data and models, whereas the EIFS values are usually well
within the short crack regime. The actual behaviour of short cracks is greatly
influenced by a number of factors, including crack size, shape, and location
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(12), local stress-strain fields at notches (13) and fastener holes, fretting (14),
load history (15), fastener fit (16) and hole preparation (e.g., cold working),
and material microstructure (17). Present knowledge is inadequate to account
for these factors quantitatively. This means that EIFS values and distributions
apply only to the particular set of conditions for which they are derived.

A better understanding of the apparently anomalous behaviour of short
cracks would enable modification of analytical modelling and extrapolation
and provide a more certain basis for the EIFS approach. Some progress has
been made but much remains to be done (7). Thus it may be concluded that
short crack growth is of primary importance for durability analyses of metallic
airframe structures.

Conclusions

The practical engineering significance of short fatigue cracks in aerospace
structures is limited. At the present time there are two areas in which short
fatigue crack behaviour is of interest or importance:

(1) safe damage tolerance design and operation of some engine components,
notably discs and blades;

(2) durability analysis of widespread cracking at fastener holes in metallic
airframes.

Even in these areas the current importance of short cracks is mainly
restricted to military aircraft, whose performance requirements place greater
demands on structural integrity. This situation may change, but only gradually.
If short cracks are to become generally significant for safety it will be necessary
to achieve major advances in feasible NDI capabilities. With respect to
durability, short cracks are potentially important for analysis of widespread
cracking in both civil and military metallic airframe structures.
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