PLASTIC DAMAGE IN ROUND NOTCHED TENSILE BAR USING CONTINUUM
DAMAGE MECHANICS

Bonora N.!, Marchetti M." and Milella P.P?

Damage due to plastic deformation in metal that exhibit ductile
behaviours was investigated by many authors using different
approaches. The continuum damage approach proposed first by
Lamaitre and Chaboche was here used to develop a post process
routine for damage evaluation. A simple but accurate resolution
scheme suggested by Owen was modified and used to predict damage
accumulation process in a notched tensile bars specimen. Results were
compared with traditional cavity growth measurement performed by
the authors.

INTRODUCTION

In the last thirty years ductile fracture mechanisms have been the subject of investigation
of many researchers. The former basic investigation on this subject was developed by
McClintock [1]. He found that ductile fracture is intrinsically related to the void growth
and the void growth rate is a function of the plastic strain rate, of the triaxiality ratio and
of the hardening coefficient of the material. Later, using variational approach to the void
growth into a material that exhibit ductile behaviour, Rice and Tracy [2] found a result
really close to that experienced by McClintock. They found that the cavity growth rate is
dependent only on the triaxiality ratio and on the plastic strain rate. Rice and Tracy first
postulated that ductile fracture occurs as soon as a critical value of the cavity growth is
reached. That value is characteristic of the material under investigation and is really
difficult to be determined theoretically. Cavity growth criterion is really easy to be applied
but unlucky does not give accurate results for high stress gradients or when void
interactions can’t be neglected [3-5]. To take into account of all the complex phenomena
that occurs at microscopic level different models, that go under the common name of
Continuum Damage Mechanics, were developed. Pineau, Gurson, Rousselier et al [6-8]
re-defined the constitutive law of a porous material that exhibit ductile behaviours
introducing the effect of the volume fraction of voids on the yielding surface. Lamaitre
and Chaboche [9-11], in the framework of the damage mechanics proposed a different
kind of approaches followed also by other authors [12-13]. Here, damage mechanisms are
localized into a micro scale that does not interact with the macro scale up to all the micro
volume is damaged and a macro crack appears. That kind of hypotheses permit to
formulate the interaction between damage and plasticity using standard continuum
mechanics approach. Different kind of coupling levels could be developed. In all these
models, some material constants appear and have to be determined by experimental
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measurements. One of the most common specimen geometry used for these purposes is
the round notched tensile bar (RNTB). In fact this geometry permits to obtain different
triaxiality ratios and it is easy to be study using finite element in axial-symmetric
formulation. The characterization of these kind of specimen using the Lamaitre model was
made. A simple post processor procedure to solve the coupled damage-plasticity equations
is proposed. The results are also compared with the classic Rice and Tracy model results
and with some experimental data performed by the authors in previous works [14-15].

MODEL

Damage is always defined as a progressive deterioration of the material, physically it is
related to micro-cracking, micro defects, void growth and dislocation pile-ups. As
consequence of these observation a main hypothesis can be made: the damage volume is
at least of an order of magnitude smaller of the usual representative volume element used
in the continuum mechanics. As a consequence of this hypothesis it is possible to affirm
that:

A) The influence of the micro scale phenomena could be neglected at the macro scale up
to all the micro volume is damaged and a macro crack nucleates.

B) Strain Equivalence. The total strain field is the same at micro and macro scale. The
stress in the micro scale is replaced by the effective stress.

C) Knowing the strain history the coupling between damage and strain at micro-level can
be solved.

Damage is defined as the ratio between the initial section, S, of a given volume element
and the effective resistant section, S, that take into account of the net area, the interaction
between the micro defects, etc.:

The strain equivalence hypothesis allows to use the same constitutive equations used in the
continuum mechanics where the stress is replaced with the effective stress and an
additional equation for the damage is also added. The yielding function for a Von Mises
material is given by:
[
-_%_-R-k
4 1 -D

where R is the hardening stress and K is the elastic limit under which no damage occurs
(that is usually given by the limit fatigue stress.). The complete set of constitutive
equations is given by:
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where X is the plastic multiplier. The hardening stress is given in the Ramberg-Osgood
form:

1
R=k -c™ - 4R oy o =24 .
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K, and M, are the Ramberg Osgood material constant. The damage constitutive law is
given by:

2
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where D,,, €, €, are material constants Y is the strain energy release rate and

1 |3
a,,=-;(u"+cn+c,,) s"-a”-.s(d,,+an+a,,)6v % = | 35

Finally the expression of the plastic multiplier is given by:
-3 5%
20, (1-D)R' (p) +[k+R(p)]oplaY

In that formulation the damage and plasticity are fully coupled even if the dissipation
effects in the full potential are disengaged.

RESQLUTION SCHEME

During the solution of the equations showed in the previous section, the principal
constraint that has to be verified is that at the end of each increment the material point has
to belong to the yielding surface. That require a proper correction on the stress tensor
components that means a precise direction of the plastic flow. For this purpose the
correction scheme proposed by Owen [16] for the elasto-plastic problem in finite element
method, was here modified to take into account of the coupling between damage and
plasticity. Underscored letters are used for vector and double underscored letters are used
for a tensor quantities. First of all the plastic multiplier is re-formulated in terms of total
strain rate that is also the given input in the problem under investigation. The normality
rule gives:

o L ¥ ap =0
df 3;;da'(, + R{"{ + _a.5

that can be rewritten as:
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aTdg - Bd\ =0

where a” and B are
r. [ _ .1 of af
a {—ag} b — [ T dK + ) dD

taking into account of the expressions given in the previous section we obtain
- 3¢
B=[H’+:.- (U)+HICP‘¢)-6_)—I]

where H’ is the local slope of the hardening curve and Z is equal to zero if the equivalent
plastic strain is lower then a threshold value under which damage is zero, otherwise is
equal to one. The total strain equation can be rewrite as

e = dgd + de? = Q—Idg +d\a
where D is the elastic tensor modified to take into account damage.
Pre-multiplying by a’D and eliminating the term a’do we have for the plastic multiplier:

[B+a™Da] ™

The principal steps into the resolution scheme can be given in this way:
- At the beginning of each step the rate of stress is computed assuming elastic behaviours.
_ For each Gauss point the total stress are accumulated according to
g = gtr " *dg“ld
where r is the iterate number. .
- Check if the Gauss point had yielded during the (r-1)* iterate.
*If the Gauss point has not yielded then check if ”,,, >0,
*% if NO: the Gauss point is still elastic updated and go to the next step.
*x if YES: the Gauss point has yielded during the current increment. The
stress portion greater then the yield stress has to reduced on the yield
surface. The reduction factor ® is given from Figure 1 as
AB/AC=(0"",,-0,)/(d" ) ")
* If the Gauss point has already yielded then check if " 0" U
** if NO: the point is under elastic unloading.
#% if YES: all the excess of stress has to be reduced on the yielding
surface and, as in Figure 2, R=1.
- For the yielded Gauss point the portion Rdo’ can be reduced using:
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Figure 11 1 stress at a point in an elasto-plastic continuum at initial yield.
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Figure 2 Incremental stress changes in an already yiclded point in an elasto-plastic continuum.

That produces an increasing of the plastic flow and of the damage. Relaxing the excess
of stress in several stages the accuracy of the solution is improved. More details on this
kind of process or on different kind of scheme to the same problem are discussed in [ 17,
18].

- At the end of each step the stresses, strain and damage are updated.

NUMERICAL RESULTS

The damage accumulation process in a round notched specimen was evaluated and results
were compared with the cavity growth calculation performed by the authors [14, 15] in
a previous works. The geometry of the specimen under investigation is depicted in Figure
3. Only a quarter of the specimen, using a notch radius of 2 mm, was simulated in
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axial-symmetric formulation. Loading was applied imposing a displacement on the remote
section. Damage calculation shows that fracture starts at the center of the specimen were
even if the plastic strain is not too much, if compared with the element at the tip that
reaches the 45% of plastic deformation in correspondence of the fracture load, the3 1, 4re
4 shows the trend of the triaxiality factor along the minimum section at different load
steps. In that figure there is clear evidence that the triaxiality factor is almost constant
during the loading phase but it has the highest values at the center of the specimen.
Damage accumulation history is shown in Figure 5 where the damage values along the
minimum section are plotted for different load steps. The highest curve is the damage
values in correspondence of the fracture load. The damage trend is anyway very similar
to the cavity growth trend and this kind of comparison is shown in Figure 6 where the
value of the cavity growth, in correspondence of the fracture load, is normalized by a
factor of 9.5 so to have the same scale. Damage and cavity growth shows the same trend
for the elements close to the symmetry axis. Some differences appears in the element close
to the notch where the cavity growth criterion predicts a more severe damage state.
Anyway continuum damage mechanics permits to evaluate also the loss of capability of
carrying load of the damaged elements. In Figure 7 the macroscopic axial stress is plotted
versus the total strain in correspondence of the Gauss point closest to the axial axis for the
central element.

ONCLUSIONS

A very simple resolution scheme for the damage equations directly based on the total
strain formulation proposed by Owen was used. This kind of resolution scheme allows to
obtain with a very short time calculation damage measurement from any strain history
previously obtained by finite element analysis. Damage measurements using continuum
damage mechanics were compared with traditional damage model as cavity growth
criterion proposed by Rice and Tracy. Both model are in agreement with the experimental
data but continuum damage mechanics gives much more information on the phenomena
during accumulation process. Using the same scheme an approach to damage, fully
coupled with finite element technique, could be developed.
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