ANALYSIS OF STRESS SINGULARITIES IN BI-MATERIAL
INTERFACES WITH APPLICATIONS TO IC PACKAGING

J.C.W. van Vroonhoven®

During temperature cycling of plastic-packaged semicon-
ductors, stress concentrations arise at interface corners.
This may lead to delamination (loss of adhesion between
the different materials) and other failures such as cracks
inside the plastic encapsulation. The order of the stress
singularity at the edges of the silicon chip does not depend
on the coefficients of thermal expansion, but only on the
Dundurs parameters which are related to the shear moduli
and Poisson ratios. Situations with complete adhesion and
with delamination are compared.

INTRODUCTION

Semiconductors are encapsulated by 2 plastic mould compound. Because of
the demand for integrated circuits with higher memory capacities the silicon
chips have increased in size, while the plastic-package dimensions have become
smaller and thinner. This has resulted in an increase in the failure rates of
the devices during temperature cycling tests between +150°C and —65°C.
Observations by van Doorselaer and de Zeeuw [1] using scanning acoustic
tomography showed a correlation between crack initiation inside the plastic
and delamination, i.e. total loss of adhesion between the silicon chip or the
metal leadframe and the plastic encapsulation. An example is given in Fig. 1.
In order to understand this simultaneity of failures and fracture, the effects
of adhesion and delamination in bi-material interfaces are analysed.

PROBLEM FORMU LATION

For an investigation of the stress components near the edges of the silicon, the
model of a bi-material wedge corner is employed. We distinguish between (a)
-
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geometr'xes where both interfaces of the wedge are perfect\y bonded, and (b)
geometries where one interface has de\am’mated, see Fig. 2. Both materials
are assumed isotropic and linearly clastic, having shear modulus pks Poisson’s
ratio Vk and coefficient of thermal expansion Cy. We define Kk = 3 — Avk for
plane strain and Kk = @3- )/ (Lt 1) for plane stress (k=1 2

We introduce the complex coordinate z = z+iy=" eif where 0w
for material 1 and w—27 <0 0 for material 2, with wedge angle W, and use
the complex function formulation for linear elasticity, s€€ Muskhe\ishv'ﬂi 21
The normal and shear stresses ON.S along any curve AB, the d'xsplacements

U, U and the temperatureé T in material k (k=1 2) are given by
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where k(%) and Pr(2) are holomorphic stress functions and Mi(2) 31€ holo-

morphic temperature functions in the tespective sectors of the wedge- These
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functions are determined by the boundary conditions. Across interfaces with
perfect adhesion the stresses (o + iog) and the displacements (u+ iv) are
continuous- De\am'mated interfaces aT€® assumed t0 be stress-iree-

THERMAL EEFFECTS

During the temperature cycling tests for semiconductors: the temperature
yaries at a very Jow rate and can therefore be regarded as quasi—static an
uniform, T = AT. Consequent\y, the complex temperature functions in the
equation (3) are given by mw(z) = AT - z for both materials.

The complex stress functions show a limiting behaviour > for z 0.
Therefore, the stress and temperature functions in the equation (2) are only
of comparable order when A =1, 1e when the stresses remain finite near
the vertex of the wedge [ ). From this we conclude that the order of stress
sing\xlarities is not influenced by uniform temperature distributions or by the
coefficients of thermal expansion- Of course, the temperature variation of
the environmen introduces thermal stresses inside the materials, but it only
influences the intensity of the stress field. The singular behaviour of the
stresses 18 typically caused by the mismatch of elasticity constants.

ANALYSIS OF STRESS SINGU LARITY

The singular behaviour of the stress components in the vicinity of the wedge
is charactetized by a scalar parameter A, the order of the singularity- The
complex stress functions behave like

ouz) = A7 () = Be? (z—0) (4)
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It has been shown by Theocaris [4] that the complex conjugate expressions
with X can be omitted. Since the energy density at the vertex z = 0 must be
integrable, we have the restriction 0 < Re A < 1.

Substitution of (4) into the boundary conditions with the use of the expres-
sions (1)-(2) and elimination of the constants A and By yields characteristic
equations for the parameter A, which are subsequently solved for A in the
complex plane. The order of the singularity is now determined by the root
) with the smallest real part under the restriction imposed above. Smaller
values of the real part of A imply more severe stress concentrations.

The parameter A depends on the wedge angle w and the four elasticity
constants p1, k1 and g, Ko. It is possible to reduce this dependence by using
the so-called Dundurs parameters [5] which are defined by

_ Ha(k1+1) — (ke +1) _ (k1= 1) = m(Ra — 1) (5)
T opo(sr + 1)+ (ke + 1) po(ky + 1) + pa(r2 +1)

The parameters coincide, i.e. @ = 3, when the materials have equal shear
moduli, ; = po. In the case of two identical materials we find @ = 8 = 0.

The elasticity constants are in the range 0 < g < 0o and 1 < &3 < 3 for
plane strain (k = 1, 2). Consequently, it is found that —1 < @ < +1 and
(a —1) € 48 < (a +1). Thus, it is convenient to introduce v = 8 — a/4
which is between —1/4 and +1/4. For plane-stress situations, however, we
have 5/3 < ki < 3 and therefore (a — 1) < 8y < (a+1).

The characteristic equation for A in the case of two adhering interfaces is
determined in [6]. It is expressed in the parameters a and § and the wedge
angle w by the formula -

Ax = Ma-pB)sintw - 3 (a - f) sin?w {(1+ B)*sin’(Aw)
+ (1 — B)sin®(A(w — 2m)) + 2(a® — 1) sin?(A(w — 7))}
+{(1 - #%)sin(Aw) sin(A(w — 2))
~(1 - a?)sin?(A(w - )} = 0. (6)

The characteristic equation for situations where delamination is present
is derived in [6, 7]. With the use of the Dundurs parameters we obtain

Ap = 4)(a—p)?sintw — 4a?A\?sin? w + 4(a — B)Nsin’ w x
X {(ﬁ + 1) sin?(A\w) + (8 — 1) sin*(Mw — 27r))}
+2(1 = a)sin*(Aw) + 2(1 + a) sin*(A(w — 27))
+(a? = 1)sin?(2A(w — 7))
+4(8? — 1) sin?(Mw) sin*(A\(w — 27)) = 0. (7)
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RESULTS AND APPLICATION TO IC PACKA IN

In Figs. 3 and 4 the solutions to the characteristic equations (6) and (7) are
shown as functions of @ and v. The wedge angle was chosen w = 2 =90°.
Other wedge angles are studied in 6, 7). The results for the wedge with
one delaminated interface agree well with Fig. 6® of Bogy [8]. Because of
{he larger real part of A, the severity of the stress singularity in the case
of complete adhesion is considerably lower than for delaminated geometries.
Furthermore, it is observed that no stress singularity occurs (A = 1) for
perfectly bonded wedges of materials with equal shear moduli (@ = B).
In relation to integrated-circuit packaging these results imply that

1. delamination Jeads to higher stress concentrations at edges of the silicon;

9. the order of singularity only depends on two combinations of elasticity
parameters and is not influenced by coefficients of thermal expansion;

3. stress singularities are avoided when silicon and plastic encapsulation
have equal shear moduli.

In accordance with the reliability research in [1, 3), it is concluded that
failures in plastic—packaged integrated circuits during the temperature cycling
tests start with loss of adhesion. As 2 result, the stresses inside the packaging
material are intensified and, eventually, fracture may occur- Consequently,
the reliability of encapsulated semiconductors is improved when adhesion of
all interfaces can be preserved. The present research has indicated which
parameters are important in preventing the occurence of delamination.
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Fig. 1. Progress of delamination during temperature cycling (TMCL).
Loss of adhesion is indicated by arrows.
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Fig. 2. Geometry of bi-material wedges with adhesion and delamination.
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Fig. 3. Adhesion. Re A
from middle to the sides)-

Im A (- - -) is 0.04, 0.08, 0.12, 0.16, 0.20 (both
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to right) and Im AN(--)is 0.005,
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