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PREDICTION OF CRACK PROPAGATION IN
REINFORCED CONCRETE STRUCTURES

M.H. EL-Haddad "

ABSTRACT Fracture mechanics solutions are developed to
predict crack propagation behaviour in reinforced concrete ele-
ments. These solutions take into consideration those factors that
can control the susceptibility of concrete elements to fracture, such
as: concrete cover, crack size, percentage of steel reinforcement
and strength and fracture properties of steel and concrete
materials. Based on these solutions, cracking moments at various
crack sizes as well as the ultimate fracture moment can be
predicted. Expressions for surface crack width and rotation of
cracked sections have also been obtained. A close agreement is
obtained between experimental and fracture mechanics solutions.

INTRODUCTION

In the conventional analysis approach to concrete structures, concrete is assumed
not to be working in_tension. However, such analysis does not take into consider-
ation the stiffness variation and stress concentration due to the presence of cracks.
These effects can be considered if fracture mechanics techniques are employed to
determine whether existing cracks pose a problem to the integrity of concrete
structures. Most of the work on fracture mechanics has so far only dealt with metals
[1]. Some of the fracture control methods used for metals are however not suitable
for concrete, the fracture behaviour of the two materials being different [1].
Although a large amount of work has been carried out in order to investigate cracl
propagation behaviour in plain concrete , limited analytical and experimental studies
[2-4] have been carried out in order to predict crack propagation behaviour in
reinforced concrete structural elements. Fracture mechanics solutions are developed,
in this paper, to predict crack propagation behaviour in reinforced concrete elements.
These solutions cover the full range of relative crack depth ratio. Based on these
solutions, simple expressions have been obtained to predict cracking moments,
ultimate fracture moment, crack width and rotation of cracked sections.

Solutions for K for cracks propagating in concrete members have been developed
recently [2-5], which are only valid for small crack sizes. Solutions for K which cover
the full range of relative crack depth ratio a/W are developed in the next section.

The effective stress_intensity factor for a through crack in a reinforced concrete
element shown in Fig.1 subjected to bending moment value M can be obtained
by substracting the stress intensity value due to the force in steel bars T, from
the stress intensity factor due to M[2] as follows:
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K=6M |2 .Yy / (BW?) - T,[3.Y/(B.W) N

where a is the crack depth, B and W are the width and depth of concrete section
respectively. Yy, is a geometrical bending correction factor dependent on the relative
crack depth ratio a/W [6] and Y is a correction factor dependent on crack depth
ratio and concrete cover b [7]. Expressions for Yy and Yr are given below.

Short Crack (0<aw <0.60)

Yy = 199 - 247 (a/W)+ 12.97 (a/W)? - 23.17 (a/W)3 +24.8(a/W)* 2)
Yr=Y, Y, W/a ©)
where,

Y, =352/ (1 -a/W)»2-435/ (1 - a/W)l2 + 213 (1 - a/W) “)
and

Y, =1.12+0.9(b/a) - 9.1(b/a)2 + 33 (b/a)® - 48(b/a)4+25 (b/a)’ ©)
Equation (3) is simplified using a least square fitting as follows:

Yy=0<+B(a/W- ¥)2 ©)

where o¢,B and ¥ are constants equal to 8,60 and 0.30 respectively for the case of
b/w less than 0.10
Long Crack (0.6<a/W<1)

Expressions for Yy and Yt can be obtained using the solution for a long edge crack
approaching the edge of the cracked section. This solution, which is derived from

euaber’s work on deep notches [8], is given by Paris and Sih  [9] for the case of
pure bending as follows:

Ky= 433 M / {B (W-a)3?} O]
Comparing this equation with the first term given in Equation 1, an expression for
Yy can be derived as follows:

Yy =0.722 /{(1-a/W)32 (a/W)'2} ®)

Stress intensity factor due to T, can also be obtained based on Paris & Sih [9]
solution as follows:

K,=4.33 M/{B(W-a)?} + 0.537 TJ/{B(W-a)12)} ©)]
Where M, is the moment acting on the middle of the uncracked ligament due to T
which is equal to :

M,=T, {(W+a)/2 -b} (10)
Substituting Equation (10) into Equation (9) and rewriting the results in a form

similar to the second term given in Equation (1) ,an expression for Yt can be
obtained as follows:

Y=2.7{1+0.6(a/W)- 1.6(b/W)}/{(a/w)!? (1-a/W)3?} (1)

Values of T, given in equation (1)can be determined by analysing the concrete
section subjected to a known value of M.In the elastic casethe position of the
neutral axis can be obtained blg applying conditions of equilibrium and neglectingr the
cracked concrete as shown in Fig.(1) which leads to the following expression for Tg:
T,=M/{d-z/3 + B(w-a).(W-a-z) / (3nA,. (d-z))} (12)
where z is the depth of the neutral axis measured from the top fibers and is given
by:
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2= {B(W-2)22+n.A,d}/{(n.A+B(W-a)} (13)

where n = Eg / Ec and Eg and Ec are the elastic modulus of steel and concrete
respectively.Once steel has yielded, the force Ts is assumed equal to Ag.f, where f, is the
yield stress of the steel. This assumption does not take into consideration the strain
hardening of steel as strains increase.

ROTATION AND CRACK WIDTH

The rotation,Q’, of cracked concrete section and the surface crack width,d shown in

Fig. (1) can be obtained using principles of super position as follows:

B=By-Br 14
0=0y-Or (15)

where (ZfM and @ are the rotations due to M and Tg respectively.dM and dT are the
crack widths due to M and T respectively. These values can be obtained based on
Castiglianos theorem as suggested by Paris [7] according to the following integration:

Ap=2[E | aKp DK/ dF dA (16)
o

where K, is the stress intensity factor corresponding to the case of loading, Kg is the stress
intensity factor due to load, F, applied in the direction of deformation Ar and A is the
area of the cracked surface. Based on Equation (16) and the solutions for stress intensity
factor given above, expressions for Fand O are derived below.

Short Crack (0 < a/W < 0.60)

Substituting for Yt and Yy from expressions given above an expression for @ is obtained
based on Equations (1),(14) and (16)as follows:

¢=72/(ECBW2){M-TS(W/2-b))(1.98(a/W)2-3.28(a/W)3+14.4(a/W)4-31.3(a/W)5+63.6(a/W)6

-103.4(a/W)7+147.5(a/W)8-127(a/W)*+61.5(a/W)'1%}-

12T /E BW{1.98(a/W)2-1.91(a/W)3+16(a/W)-34.8(a/W)?
+83.9(a/W)5-153.7(a/W)7+256.7(a/W)3-244.7(a/ W)’ + 133.5(a/W)10} a7

To obtain O as given by Equation (15), an approximate solution for Kp corresponding to
force F applied at the bottom surface of the cracked section and valid for the case of short
crack [7,10] is given below:

KF=2F/(BJ7_IE) (18)
Based on equations 2,6,15,16 and 18 an expression for 6 is obtained as follows:
(5=24M/ECBW| {1.99 a/W -1.24(a/W)2+4.32 (a/W)3-5.8(a/W)4+5(a/W)5}

4T/EBW/| {oca+WB/3 (a/W -0)3+BW3/3} (19)

Long Crack (0.6<a/W <1.0)
Based on Equations (7), (9),(14) and (16), an expression for J is obtained as follows:

@=18.75 MIEBW? {(1-(1-a/W))/(1-a/W)?}
-23.4 T/EBW {a/W(1-1.6 b/W)+(a/W)2(-0.2+0.8 b/W)}/ (1-a/W)?2 (20)
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In order to obtain the crack width,(S, solution for Ky given in Equation (16) for the case
of Long Crack corresponding to force F applied at the bottom surface of the cracked
section, is obtaineg by substituting into Equation (11) for the case of b equals zero.Hence
an expression for O is obtained from equation (15) as follows:

0=23.4 M/EBW {a/W(1-0.2 a/W)/(1-a/W)2}-7.29 T/EB {{a/W(1.28-3.2 b/W) +
(a/W)2.(1.28+0.64 b/W)}/(1-a/W)2 - 0.72 In(1-a/W)} (21)

CRACK PROPAGATION PREDICTIONS
Incremental Crack Growth

While failure occurred suddenly in precracked plain concrete beams, incremental crack
growth took place in the precracked reinforced concrete beams Fig.(2), until final failure
occurred by crushing, failure of steel and fracture of concrete depending on the percentage
of steel reinforcement [4]. The stable crack growth observed in the reinforced concrete
beams was the result of the effect of reinforcing steel in these beams. This steel tended to
close the crack and hence prevent sudden failure of such beams as simulated by the
fracture mechanics model given by Equation (1).

A comparison was made between experimental [4] and theoretical results based on
fracture mechanics (FM) criteria proposed above as shown in Figs.(3) and (4).The results
were plotted in terms of applied load corresponding to cracking bending moment at mid
span section versus crack size. Based on Fracture Mechanics criterion, the cracking
bending moment values were calculated by substituting into Equation (1) for K equal to
0.6 MPa[m which is the K1, value obtained from plain concrete tests. A close agreement
was obtained between experimental and theoretical results as shown in the Figures.

Incremental crack growth in reinforced concrete beams can also be presented in terms of
the non dimensional form My/(K1.BW372), proposed by Carpinteri [2]. My is the cracking
moment at specific crack size and percentage of steel reinforcement. This form can easily
be derived from Equation (1) by substituting for K equal K1_as follows:

M=K1,BW32 / (6{a/W.Yy) + A fW.Y7/6.Yy
- M{/(K1,BW32)=1/(6 Yy{a/W)+ A, £, W.Y1/(6.Y ) K1.BW3?) 22)

Comparison between experimental and predicted results based on Equation (22) is shown
in Fig.(5) at various percentages of steel. An increase in the cracking moment was noticed
as the percentage of steel area increased. This effect was more pronounced as the crack
size increased. It should be noticed that the moment required for propagation of
pre-existing cracks decreases as crack size increases until it reaches a minimum and then
increases as shown in Fig(5). This behaviour is typical of under-reinforced concrete
sections where percentage of steel area is less than the balanced steel area [11]. However,
for over reinforced concrete sections, the cracking moment is expected to increase with the
increase of crack size [4].

Examining Equation (22) indicates that, at small crack sizes, the first term given at the
right hand side of the equation is much larger than the second term. Hence the growth of
small cracks is sensitive to the fracture toughness of concrete rather than the percentage of
steel areas. However as the crack size increases, the first term represents a small
proportion of M; compared with the second term given at the right hand size of the
equation. Therefore, the growth of large cracks is sensitive to the area and yield strength
of steel reinforcement.
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It should also be noticed that the predicted cracking moment based on fracture mechanics
criteria stays constant at long cracks as shown in Fig. 5 due to the fact that strain
hardening of steel is neglected in the model. However, the advantage of the present model
lies in its simplicity which avoids complicated iterative techniques and it can be employed
in design calculations with reasonable accuracy as shown in the above figures.

ULTIMATE FRACTURE MOMENT

As noticed above, an incremental crack growth usually takes place in cracked reinforced
concrete beams without sudden failure as long as no failure of steel bars has occurred
[1-4]. However, as the moment increases, crack size increases until cracks become large
and it is important to determine the cracking moment at large crack size which is
considered as an ultimate fracture moment, My and it is of interest to compare this
moment with the ultimate moment calculated from the classical ultimate strength
calculations. M can easily be determined from Equation (22) as a/W reaches unity. At
large crack sizes, stress in steel bars is expected to reach the steel yield stress. In addition,
at large crage crack sizes the first term given at the right hand side of Equation (22) can be
neglected as mentioned above. Hence M, can be derived from Equations 8 , 11 & 22
when a/W reaches one as follows:

M= A W.Y7/6Yy =W.Af(1-b/W) (23)

The above expression is of interest since it is simple and it shows that the ultimate fracture
moment of concrete beams is only affected by the yield strength of steel, area of steel
reinforcement and concrete cover b. Table 1 gives a comparison between Muf calculated
via equation 23 and experimental ultimate moment capacity of reinforced concrete beams.
It is noticed that for under reinforced beams, equation 23 results in moment values close
to the ultimate capacity of these beams. Therefore equation 23 can be used in the ultimate
design calculations of such beams.

CRACK WIDTH CALCULATIONS

For the appearance of and resistance to corrosion, service loadings should be controlled
to limit the crack widths at the surface of damaged concrete members. Such crack widths
are affected by the applied load level, amount of steel reinforcement, concrete cover, stress
in steel bars and crack size as predicted by Equations (19) and (21) developed in the
present paper. These equations can easily be employed to predict crack widths at surface
load levels. A comparison is made between experimental and predicted crack widths at the
surface of reinforced concrete beams as shown in Fig. 6. Hence, these equations become
useful and can be employed in the design of reinforced concrete members where control of
crack widths to specific limits is required.

SUMMARY

Simple expressions have been developed to predict the cracking moment at various sizes of
cracks, ultimate fracture moment at large cracks, surface crack width and rotation of
cracked sections subjected to bending moments. Close agreement was obtained between
experimental and predicted results based on fracture mechanics solutions. It is shown that
an increase in the cracking moment has occurred as the percentage of steel area has
increased.. Although the cracking moment of small crack sizes was sensitive to the fracture
toughness of concrete material, the ultimate fracture moment of concrete sections was
shown to be only affected by the yield strength and area of steel reinforcement.
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Table 1
E : | and Predicted Ulti M c ity of R.C. B
Original Crack W b A Ultimate Predicted
Depth,a,mm. mm mm mm? Moment,KN.m My KN.m
0,45,75,90 150 40 14* 1.3,1.27,1.21,1.28 0.90
0 150 15 33 3.1 3.2
0,45,75,90 150 40 33 2,1.8,1.7,1.6 2.6
0,45,75,90 150 40 50" 3.9 3.9
0,45,75,90 165 15 50*** 3.3,3.1,29,3 3
0,75,90 150 40 100™** 4.6,5.1,4.6 4.4

*f,=560 MPa , **f, =720 MPa, ***f,=400 MPa
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