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This paper presents the first approach to evaluate bylk dissipation
in concrete, A simple constitutive equation was deriveq for the
bulk material, based on internal variable concepts and a modified

ankine criterion, To simplify the use of the model a firgt order

berturbation approximation wag developed. This method is
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probably due to the complexity of the necessary computations, no quantitative results
have been reported up to now.

This paper presents the first results of a research on the influence of bulk
dissipation around the cohesive zone on the variation of measured specific fracture
energy with specimen size. To this end, a new simple constitutive equation has been
developed for bulk concrete based on a modified Rankine criterion. In order to
simplify the application of the model a first order perturbation method has been
developed and applied both to usual laboratory sizes and to the limit of infinite size.

THE MODEL

To include bulk dissipation in the cohesive model we follow the general theory
described in [5]. According to this, in a stable pure tensile test one would get the
stress-average strain depicted in Fig. 1. The model is completely defined by a
dissipative stress-strain relation in the loading branch previous to the peak, and by a
stress- crack opening curve in the post-peak softening branch.

In this first approach to the problem, we consider a bulk stress-strain behaviour
without stiffness degradation. During softening the bulk material close to the
cohesive crack unloads —following a line parallel to the initial elastic branch—
leaving a irrecoverable strain, which in the uniaxial case is €P, variable with the
previously reached level of stress oP (Fig. 1). The relationship between €P and GP
obtained from a uniaxial test will be the main input for our model, which, in order to
be used in a non-homogeneous case, must be extended first to triaxial situations.This
extension was developed in detail in [6] using an internal variable formulation
together with a thermodynamic approach which is powerful enough for the model to
be easily extended to include stiffness degradation as well as irrecoverable strains.

In its present simpler form, it happens to coincide with an elastoplastic model with
a Rankine loading function and associated flow rule. The final equations are
extremely simplified by introducing the Supreme functional of the maximum
principal stress oy :

Sup (o7) : = Sup [0y (1 ),t] = max {o} (T ); Te€ [0,t]} 1)
With this definition, the governing equations are reduced to:

de =C do + Py dep (€3]
P = f(oP) and oP = Sup (oy) 3)

Equation (2) is the classical split of the incremental strain into elastic and
irrecoverable parts. The outlined fonts indicate second order tensors, and C is the
elastic compliance fourth order tensor (constant). Py defines de direction of plastic
flow and is the projector tensor on the subspace associated to the largest eigenvalue
of the stress tensor, o, and €P is the (uniaxial) equivalent plastic strain. The two
equations (3) are the hardening law and the integrated form of the Rankine load
function oj < oP. The hardening law is the only material function of the model . It is
the relationship between the equivalent plastic strain and the instantaneous yield limit,
and it is directly obtained from a uniaxial tensile stress-strain curve in the pre-peak
branch, as depicted in Fig. 1.
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. These equations may be easily handleq to find a closed form equation relating the
Incremental strain tengcr to the history of principal stresses:

9 =Cdo+ Py fISup(op) disup(or] @

along any loading path, may be written in closed form a
Sup(oy)

wP = D[Sup(qy)] = [ o® () dgp )
o
In this paper, the hardening Jaw hag been approximated by a parabolic €quation of
the second degree for stresses over 50 percent of the tensile strength:
P
& = f(op) = ( for F<05

P
eP=for)=¢_[2 O _ 1)2 B 205 ©
t

ft
where f, s the tensile strength and g, is the inelastic strain at the peak .

The softening function was taken to be the bilinear €quation proposed by
Hillerborg and coworkers which was exhaustively analyzed by Petersson [7], and
has been used by many researchers to simulate concrete fracture,

PERTURBATION ANALYSIS
————=BAllUON ANALYSIS

constitutive equation
de = 5 do + A [P, £*“[Sup (op)] d[Sup (op)] )

Obviously, when A= 0 the constitutive equation tends to the elastic form, so that
atany loading Step one can write the solution for the stress distribution ag

O=0p+0A) and Sup [o7] = Sup [Oor] +0(A) 9)

where O()) and O) are, Trespectively, a tensor-valued function and a scalar-valued
function vanishing for ) — 0, and &, and Opr are the elastic solutions. The

dissipation density may then be written, according to Eq. (6)

W= [op (o) dop + 0L (10)
0
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The first order approach for the dissipated energy is obtained taking only the first
term in equation (10). Under these circumstances we only need to know the
distribution of principal maximum stresses computed with the hypothesis of linear
elastic behavior. The smaller the plastic strains with respect to the elastic ones, the
better the approach will work.

APPLICATION

When performing an ideal RILEM test on a bulk-dissipative material, the measured
or experimental fracture energy, Gpg, Will be the sum of two terms. One is due to
the work of the cohesive stresses, which is independent of size and is equal to the
area under the softening curve, Gg. The second term, G, comes from the energy
dissipated in the bulk and it is size dependent because the size of the plastic zone
changes with specimen size.

The analysis of the influence of the size on G has been performed for three point
bend specimens with the geometry depicted in Fig. 2. The computations included an
asymptotic analysis for infinite size The concrete properties are included in Fig. 2.

The computational method for small specimens was very simple in principle. The
classical problem of the cohesive crack in a linear elastic medium was solved step by
step with a commercial finite element code using 100 elements along the beam depth
and special interface elements to simulate cohesive behaviour. The supreme of the
major principal stress at each Gauss point was recorded along the process, and after
complete fracture the energy dissipated per unit volume was found using Eq.(10).
Volume integration (sum over elements) gave the total energy dissipation in the bulk,
and division by the area of the initial ligament laid Gp.

For infinite size the elastic solution in steady-state crack propagation was obtained
using the asymptotic method developed by Planas and Elices [8, 9]. The maximum
principal stress was computed on a dense 2D grid around the cohesive zone, and the
steady-state bulk energy dissipation rate was obtained using J-integral concepts. See
[6] for details.

The essential results are displayed in Fig. 3, where the value of Gp relative to the
cohesive fracture energy G has been plotted versus the size of the specimen. From
this figure it becomes evident that the bulk dissipation gives a contribution to the
experimental fracture energy which is strongly size dependent. It also appears that the
usual specimen sizes (up to 40 cm depth) are very far from the asymptotic behaviour
(infinite size). However, it is also apparent that the bulk dissipation is a small fraction
of the total dissipation, affecting the experimental result in no more than 5 percent.
Other sources of size effect must be operating to justify the variations of Gpg
reported in [4] (up to a 50 percent variation in a three-fold increase in size).

CONCLUSIONS

1. The classical cohesive crack model has been extended to account for bplk
dissipation by means of a reasonably simple model based on a Rankine loading
function which fits well uniaxial tensile tests.

2. A perturbation theory has been developed to simplify making estimates of the
contribution of bulk dissipation to the overall energy dissipation.
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3. The results for three point bent notched Specimens show that the contribution of
bulk dxssxpa_tlon to fracture energy is strongly size dependent, and that the usual
laboratory sizes are very far from the asymptotic limit.

Fi overall dissipation (less
than 5 percent) and cannot explain the observeq size effect on the fracture energy
obtained by the RILEM procedure,
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Figure 1. Schematic definition of the Figure 2. Definition of geometry
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Figure 3. Contribution of bulk dissipation to the average fracture energy as
a function of the specimen size
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