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COMPUTER SIMULATED CRACK PROPAGATION IN CONCRETE
N. A. Harder *

A new numerical method to determine crack propagation and
load displacement relation for a structural element of concrete
with or without steel reinforcement, loaded in plane strain or
plane stress is described. A mnon-linear fracture mechanical
model the fictitious crack model (1] is applied together with
one of the indirect boundary element methods the displace-
ment discontinuity method [2]. This technique has the follow-
ing advantages: It only requires elements at the boundaries
and at the cracks. Part of the unknown parameters in the set
of linear equations, is simply the crack openings. The crack
propagation path is easily determined by the algorithm, which
is not the case when applying the finite element method, see

(3]

1. PLAIN CONCRETE
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In the following a non-reinforced concrete beam or another similar structure
is described as a problem in plane strain or plane stress.

The Fictitious Crack Model

The fictitious crack model is a theory applicable to numerical calculation of
crack propagation in a concrete structure or a structure of similar materials
having a low ultimate tensile stress [1]. The theoretical ideas behind the

method are briefly described as follows:

Consider a structural non-reinforced concrete structure, e.g. 2 beam with
or without an initial crack. The concrete is assumed to be linear elastic up
to the yield stress oy. When oy is reached a crack is supposed to develop
perpendicularly to the maximum tensile stress g1 = Ty. When the crack grows
the tensile stress decreases from oy to zero according to a o —w relation. As
shown in figure la this relation is assumed to be linear. Other relations can
be assumed, for example a third order polynomial relation as shown in figure
1b. w is the displacement discontinuity in the crack. When w has reached the
value w,, see figure 1 no stress transfer takes place across the crack.

For 0 < w < wy and 0 <0 < 0y the two sides of the crack are not completely
separated and the crack is said to be a fictitious crack, see figure 2.

If the beam has initial cracks the tensile stress at the crack tips are immedi-
ately very large which means that fictitious cracks develop at the crack tips
from the very beginning of the loading. When a fictitious crack develops
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the displacement discontinuity at the crack need not be perpendicular to the
crack, i.e. w has two components we and w,, see figure 2. For simplicity it
is assumed that only Wy, gives rise to eénergy dissipation (mode 1 of fracture
mechanics), j.e, the 7 — w relation is the following linear relation

w
Tnn = 0,(1 - F") Ont =10
u

This approximation, 9nt = 0, means that the stiffness and the ultimate load of
the model are less than those of of the real structure, Since w, < wy, applies
in general, the results obtained by using the model are expected to be close
to those obtained applying a mixed mode mode],

The Displacement Discontinuity Method
The unknown barameters in the set of linear equatjons are the displacement
discontinuitjeg at the boundary and at the cracks. Many such problems are

two-dimensiona] problems, plane stress or plane strain, and for simplicity such
two-dimensiona] problems are considered in the following.

1s assumed to be small and there could be more than one crack. also a crack
could extend to the boundary T,

As shown in figure 4 the boundary I anqg the crack C are divided into a number
of rectilinear boundary elements with only one node at the midpoint of each
element. The unknown displacement discontinuities are constant over each
element. Qther boundary elements could be used, for example a two node

The displacement discontinuity at element number J, the nodal point of which
has the coordinates (zj,y;)ina global Cartesjapn coordinate system, is defined
in a local coordinate system ag shown in figure 5,

 Jp N J_ g i+
Auj = o) —ul Aub—ub —u

ul™ is the limit of the displacement uj for b — 0 through negative values, and
similarly for the other displacements,

For the elements at the fictitious crack w, and Wn correspond to the displace-
ment discontinuitjeg defined above ag follows, see figure 2.

W = —Auy, Wn = —~Auy for Auy <0
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The equations determining the unknown displacement discontinuities can be
written

[ An Ay [Aw] _ [u

> A AU | | Aul] T |l

j=1 na nb b n
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The coefficients of influence are determined analytically, see [4] or [2]. There
are 4n equations, but only 2n equations must be used, since at each node
only two of the four parameters un, ut, Onn and o, are predetermined by the
boundary conditions.

In order to obtain a unique determination of the displacements it is necessary
to specify at least three displacement components on I'. At an open crack the
boundary conditions are onn = ont = 0. At the fictitious crack o, = 0 and

Au

b) for wp = —Aup < wy
Wy

Onn = ay(l +

Tann =10 for wp, = —Aup > w,

When the equations are solved for the displacement discontinuities, then the
displacements and stresses at a point with the global Cartesian coordinates
(z;, yi) in Q or in Q* are determined from the following set of equations.

u;: _ mL [ AY, Aijb] [Aui]
)=l ) e

i ij ij

0’;1 n Bz]::a B.-H:b Auj
1 _ ij 1] a

Tyy | = Y| Biva By [Au,{] )
H - ij 1

ot,| =1|BY, BJ,

Solving the Equations
At the fictitious crack the boundary conditions are satisfied by the method of
trial and error:

As a first trial the following boundary conditions are applied:

AUb=0 Unt:‘o
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If the calculations show o, < 0 then the fictitious crack is closed.

If, on the other hand, 0 < Onn, then as a second tria] the stresses at the node
are assumed to be

Au,,
Tnn = 0,(1 + —) One =0 (3)
wu
If now new calculations show 0 < -Ayy < Wy then the fictitious crack is
open, but there is stj] stress transfer across the crack, and %nn has the valye
determined by (3).

If, on the other hand, w, < —Au, then the node is not at the fictitious crack,
but at the open crack extension with the boundary condition ¢, = Opt =

Uy = /\ﬂt or Ont = /\5',”
Up = iz, or Onn = AG,,

Uy Or Ty and Uy OF Ty, are a set of pre-fixed reasonably sma]] displacements
Or stresses. )\ is an integer giving the load step number,

It is assumed that the structure hag only one crack tip. Modification of the
procedure for dealing with more than one crack tip is straightforward, however,
more complicated in programming.

Load Step 1

First, the crack propagation path is determined by calculating the stresses
at a point on the tangent to the crack at a distance from the crack tip of
half an element length. this is done by applying (2). The crack is assumed
to propagate in the direction perpendicular to the maximum Principal tensile
stress. In thijs way the position of the first element at the fictitious crack is
determined.

In case it is found by applying (2) that at a certain location the maximum
principal tensile stress exceeds oy a fictitious crack is assumed to develop
perpendicularly to the maximum principal tensile stress in exactly the same
Way as described above for the fictitious crack starting at the crack tip. In
particular this wil] be the case if the structure hag no initial cracks,

The boundary conditions at the node of the first element on the fictitious
crack are satisfied by the method of trial and error ag described above,

In case it is found that the node is closed, the crack is stable and the calcu-
lations proceed by load step two (A = 2). In case the node is either at the
fictitius crack or at the open crack extension a new element is added.
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If, for an element at the fictitious crack, the calculations show w, < —Aup
then the element is not at the fictitious crack any more, but at the open crack
extension, and the calculation must be repeated under this new condition.

This procedure is continued until the last added new element does not open,
0 < Awuy. This means that the crack is stable for this load and the calculations
proceed with load step two (A = 2). In case the determinant of the equations
(1) is very small this indicates that the structure is near a collapse in dynamic
fracture even in displacement controlled loading.

Load Step 2
For A = 2 the procedure from load step 1 is repeated. The following load
steps are dealt with in the same way.

The Load Displacement Curve

The load displacement curve including the descending branch, e.g. for a beam,
can be determined applying displacement controlled loading, i.e. the boundary
conditions are specified as displacement components or as stress components,
the latter being equal to zero. For each load step the total load (integrated
stresses) must be calculated. If the load is a concentrated force as in a three-
point bend test then the force must be calculated as integrated shear stresses
over a cross-section of the beam, because a concentrated force cannot be deter-
mined by integrating stresses over a single boundary element. The end points
of the boundary element are singular points with infinitely high stresses.

2. REINFORCED CONCRETE

Figure 6 shows the bottom of a reinforced concrete beam with a layer of
reinforcing steel bars. a portion of the cross-sectional area corresponding to a
single steel bar is considered. Hence, the problem is dealt with as a problem
in plane strain.

As shown in figure 6 a crack perpendicular to the surface of the beam has
developed. A necessary condition for the crack to open is that the bond
between steel and concrete is destroyed over a certain length b in the figure.

The following model is applied. The structure is divided into two parts, steel
and concrete, see figure 7, b is the distance between two adjacent fixed points
at which the concrete and the steel have the same displacement. The fixed
points are predetermined. Calculations can be made for different values of the
distance b between the fixed points. Cracks can only develop at the midpoints
between two fixed points. The material properties of the concrete should in
fact be considered as random variables. This, however, is not considered in

the following.
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The Stee]

Fk = AE(&",[; —-6,(1:_1)) k= 2,3,...m -1
Fm =AE(—Es(m—l))

eak=3(yk+l_'uk) k=1,27m_1

For Csk < £4;: Esk = egp.

Fore, <e,, < €su 'l Egp =gy,

To develop this system of equations in Ay, Au,{ and u; Kelvin’s solution for
plane strajp is applied. For details, see [4].
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Figure 5. Displacement discontinuity.
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Figure 6. Crack in a reinforced concrete beam.
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Figure 8. Stress-strain curve for the
steel.
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