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FRACTURE PROPAGATION AND INSTABILITIES IN ELASTIC-
COHESIVE CRACK MODELS: A BOUNDARY ELEMENT ANALYSIS

* * ¥
Z.Cen and G.Maier

A widely accepted idealization of fracture phenomena
in concrete and concrete-like materials rests on the
assumption of a ’cohesive-softening-crack’ model for
the ’craze’ or ’process zone’ and of linear
elasticity elsewhere. On such basis the propagation
of fracture was investigated by a multidomain
boundary element (BE) approach. The following
results are briefly presented herein: the BE method
is ideally suited for this nonlinear analysis;
bifurcations of equilibrium path may occur and
prevent from considering one-half only of symmetric
structures; the hypothesis on shear transmission in
the crack zone may have a significant influence;
overall instability thresholds can be characterized
by criteria concerning small size matrices.

INTRODUCTION

The problem to be discussed in this communication can be described
as follows. The material is considered as linear-elastic and
isotropic but a fracture process is modelled according to the
cohesive-softening crack hypothesis. Namely, a discontinuity of
normal displacements Aun (normal to the discontinuity surface)

arises when the tensile stress attains an ultimate value o and is
accompanied by a normal traction pn which is a decreasing function

of Au and vanishes when Aunza, W being another material
n
parameter. The surface where O<Aun<§ is called the ’process zone’

or ’craze’, and, as the fracture propagates, is followed by the
’crack’ where Au >w, pn=0 (no interaction is assumed between the
n

two faces). As for the transmission of shear force P, along the

craze, two hypotheses can be assumed: (a) unlimited p, with no
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discontinuity in the tangential displacements (Aut=0); (b) no

shear strength (pt=0) with admissible displacement jump Aut¢0.

The above idealization of fracture processes is widely
regarded as fairly realistic and practically acceptable with the
shear assumption (a) for concrete and concrete-like materials
(rocks, some kinds of ceramics, bricks and masonry); with shear
hypothesis (b) for polymeric materials in various technological
situations.

Two-laws constitutive models of this sort (elastic stable
strain-stress law; unstable, softening 1law between relative
displacement and stress) were originally proposed for the flexural
behaviors of reinforced concrete beams in bending (1) (2), such as
overall instability snap-back (catastrophic) instabilities and
bifurcations of equilibrium paths. The cohesive two-law model was
later adopted by various Authors, for continua of concrete-like
materials (3) (4) (5) (6) (7) and experimentally investigations in
(8) (9).

METHODS AND RESULTS: AN OUTLINE

With reference to Fig.1l, the collocation BEM adopted can be
summarized as follows. A standard Somigliana boundary integral
equation (BIE) 1is written for each subdomain Q% (r=1,2).
Displacements and tractions on the boundary I" and the interface
I'c are modelled by quadratic interpolations. The BIE is collocated
in each node, the static and kinematic matching conditions are
imposed for the nodal variables on I'c and all other variables are
condensed. The linear equations thus obtained are associated to
the nonlinear, nonholonomic rate-relation pn vSs. Aun which

characterize the current craze length TIcz. Assuming the location
of the craze tip as the driving (input) variable and the load
factor increment Aa as an unknown, the finite propagation-step
problem is formulated (as a linear complementarity problem in the
craze variables only). This problem is solved by an implicit,
prediction-correction, algorithm. When the fracture propagation
itinerary is not a priori known, before each step the direction of
the craze tip advancement 1is determined as the direction of
maximum principal stress and the interface TI'c ahead the tip is
suitably adjusted whenever needed.

As an alternative to the conventional <collocation BEM
mentioned above, a symmetric BEM was also applied, resting on the
Galerkin weighted residual double-integration approach developed
in (10) and (11). The advantage of this alternative is that the
second-order work involved by perturbations from a given state can
be expressed by means of suitable quadratic forms in the craze
variables only. This circumstance was used to establish overall
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stability and bifurcation criteria, conceptually similar to those
earlier proposed for softening beams in (1) and (2).

The numerical results achieved by implementing in two computer
programs the above outlined concepts and applying them to some
typical situations are partly illustrated by Fig.2-4. These
results corroborate the following conclusions.

1. For the same number of nodes along a fixed interface Iec,
the collocation BEM and the FEM exhibit roughly the same accuracy
and convergence properties at mesh refinement; these properties
are generally better for the Galerkin symmetric BEM which, however,
is more laborious to implement. The plots of Fig.2a obtained by
the three different approaches turn out to be indistinguishable.
Fig.l1lc visualizes the superiority of BEMs with respect to FEMs in
problems 1like the present ones, where all nonlinearities are
confined to the boundary or to an interface (while the domain is
linear elastic). This superiority is further enhanced when the
fracture itinerary is a priori unknown, so that frequent
re-meshing is required by interface ad justments.

2. It was proved in this study that a sufficient condition for
overall instability due to softening in the process zone TIecz is
the fact that a matrix of the same dimension as the number of
nodes on the craze ceases to be positive definite. This finding is
illustrated by a comparison between fig.2a and fig.2b, where the
least eigenvalue of that matrix is plotted versus the displacement
under load. The onset of internal (or catastrophic or snap-back)
instability first studied in (1), turns out to be marked by a
similar circumstance concerning another (much "stiffer") matrix.

3. The instabilizing effect of the cohesive-softening-crack
model may cause bifurcation of the structural response. Namely,
for the same tip advancement there may be more solutions: as in
the four-point bending test of fig.3, a symmetric solution which
can be singled out by dealing with only one-half of the system
(say on the r.h.s. of its axis symmetry); two nonsymmetric
solutions (symmetric to each other). One of the latter
nonsymmetric step solution and subsequent propagation branch
(solid lines in fig.3a) will actually be followed by the system,
since it corresponds to an algebraically lesser external work.
Therefore the real behavior can be captured only by considering
the whole system (i.e. not exploiting its possible original
symmetry).

4. The somewhat controversial assumption (a) or (b) on shear
transmission mentioned in the Introduction is immaterial in
situations like those of fig.2 (symmetry) and fig.3a (relatively
small shear). However, the shear hypothesis has non negligible
influence on the overall response whenever shear traction along
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the craze may become significant, as shown by fig.3b, especially
if contrasted to fig.3a.

5. The case, by which the BE mesh can be adjusted, makes BE
approaches particularly advantageous, when the fracture
propagation itinerary is unknown, as in the four-point-shear tests
whose analysis by BEM is illustrated by fig.4.
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Fig.1. (a) Cohesive-crack model, (b) Basic symbology,
(c) FE vs. BE mesh for 21 nodes on TI'c
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Fig.2. Three-point test: (a) Load versus displacement for various
brittleness ratios p, (b) Least eigenvalue of matrix H-Z
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Fig.3 (a) Bifurcation: symmetric and nonsymmetric responces
(b) Influence of the shear transmission hypothesis

IP -s -3
0.2 B: p=2.5x10 E: p=1.0x10
—~Z

P/ o b2 C: p=2.5x10"" F. p=1.0x1072
1.50 b D: p=5.0x10"* G: p=1.0 g

o
S

0.50

—~o— —
== e g
|||||||x||||||r||r|||||lurn||T‘ﬁ||r|||]1|||||v||||||||||c||r|rv—l—r

0 1.00 2.00 3.00 4.00 5.00
DIMENSIONLESS DEFLECTION &/b*10%

o

o

o©

Ot i e gl ) py poay pa g

Fig.4 BE simulation of four-point shear model: nonsymmetric (solid
lines) and syrznmetric (dashed lines) responses -
(0=16.5 kg/cm®, E=270000 kg/cm”, v=0.1, b=1.0cm)
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