ECF 8 FRACTURE BEHAVIOUR AND DESIGN OF MATERIALS AND STRUCTURES

EHE APPROXIMATION OF A COHESIVE CRACK BY EFFECTIVE ELASTIC
RACKS

J. Planas and M. Elices*

The concept of equivalent or effective elastic crack is introduced
as an approximation of more detailed fracture models like the
cohesive crack models. Some specially interesting equivalences
are defined and discussed on general grounds: load-displacement
equivalence, load-CMOD equivalence, and J-CTOD equivalence.

In the second half of the paper these equivalences are explored
for large sizes with the help of the asymptotic method, already
developed by the authors.

INTRODUCTION

Substitution of an actual fracture process —a plastic or a cohesive zone surrounding
the crack tip— by an effective or equivalent crack was probably the first
approximation to non-linear fracture problems. The equivalent linear elastic problem
has to be solved in conjunction with an associate R-curve or, otherwise stated, a
crack growth rule has to be independently hypothesized as a relationship between the
effective crack growth resistance and the effective crack extension. This is not the
only price one has to pay for simplifying the cohesive crack; it was proven that R-
curves are geometry and size dependent —i.e., are not a material property— and,
consequently, the equivalence becomes severely restricted.

In spite of these shortcomings there is some evidence [1] showing that for usual
geometries and available sizes, differences between R-curves can happen to be well
inside the experimental scatter and, in this respect, they may be considered a material
property for practical purposes, so that exploring the implication of different
definitions of equivalences may be rewarding from a scientific and practical point of
view. The first steps towards a systematic analysis of equivalences are presented in
this paper.
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THE EQUIVALENT ELASTIC CRACK

In this work, the detailed fracture process is approximated by a cohesive crack as
defined in [2]. Monotonic mode I fracture is considered.

The concept of equivalent crack emerges from this particular example: Two
geometrically identical cracked samples, as shown in Fig. 1, are loaded under
displacement control u. One sample is made with a cohesive material, as defined
above, and the other is made with a linear elastic material. The measured responses
of the two samples —i.e., the loads P and P,,— to every displacement u will be
different, but we can make both responses to match each other by choosing a suitable
crack length in the elastic sample. In doing so the P-u curves of both specimens are
the same, but, in general, the equivalence ends here; stress or displacement fields, or
relevant parameters like CMOD or CTOD, are not the same. Moreover, the price paid
for the equivalence is that the linear elastic material has not a constant crack growth
resistance. Instead, a R-value changing with crack length is needed in order to keep
the P-u equivalence. As we shall see later, the dependence of the crack growth
resistance —or R-curve, as is usually known— is not a material property, but
depends on the geometry and specimen size.

At first sight, the advantages of defining this equivalence are not obvious since
there are not simple rules for the generation of the R-curves for every geometry and
size. However, in some circumstances this can be done as we shall see later.

P-Y Equivalences

This kind of equivalence is shown in Fig. 1. The actual sample is sketched on the
left, its cohesive zone has grown monotonically up to ¢, and the corresponding load
is P(c). The equivalent sample, made with an elastic non cohesive material, is
sketched on the right and it is loaded with same P value (hence the P equivalence
labeling). Notice that the crack length is not ap but a = ay + AaP-Y where P stands for
the imposed load and Y for the magnitude related with the second degree of freedom.
One should realize that the stress and displacement fields of the right hand sample are
known when the load and the crack length are known, and since load is fixed only
one degree of freedom remains.

P-u Equivalence. When the load-point-displacement u is chosen as a second
variable, one arrives at the load-displacement equivalence. If P and u are measured in
the actual sample, the equivalent elastic crack length can be computed from the
equation:

Ceglag+haP®) = )

where C,, is an expression for the compliance of the non cohesive sample. Notice
that the equivalent crack growth resistance R, = K2,, (ap+AaP-4)/E corresponding to
each pair (P,u) needs not be constant. In fact it is different, giving rise to RP-4-AgP-4
curves. Because the compliance and the RH member of (1), needed for Aa’-#
evaluation, are geometry-dependent , so will be the R-curves.

CMOD Equivalence. When the CMOD (Crack Mouth Opening Displacement) is
chosen instead of the displacement associated to the load, one has a P-CMOD
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equivalence. The equivalent elastic crack can be computed from an equation similar to
1),
CMOD
CNP(ag+AaP-CMOD) = = @)
where CMOP is the corresponding compliance associated to CMOD for a non

cohesive sample.The same comments as before, regarding the specificity of R-

curves, can be done. Also it can not be stated, at first sight, that equations (1) and (2)
are equivalent and, hence, there is no reason to equate AaP-* and AgP-CMOD,

X-Y Equivalences

The above reasoning can be generalized to a couple of variables (X-Y), where load
needs not to be one of them. Now, the actual specimen and equivalent (or virtual)
specimen are not bearing the same load, in general, and the equivalent load PX-Y and
effective crack extension AaX-Y corresponding to the virtual specimen can be
computed by equating X and Y in both specimens:

X g PXY, AaX-Y] = X 3
Y [PXY, AaX-Y] =Y C))

J-CTOD Equivalence.The couple (/-CTOD) is an example of the generalized (X-Y)
equivalence. The variable CTOD is the Crack Tip Opening Displacement .The
variable J needs some remarks: When the cohesive sample is considered, J is the J-
integral taken over a path always surrounding the cohesive zone. Under such
circumstances it was shown [3] that:

J = WK(CTOD) ©)

where W(w), is the specific work supply, or work done against the cohesive stress
to open a unit area of cohesive crack up to w [2]. For the non-cohesive sample, J is
equal to KZ2/E.

According to this, the expression of Eq. (3) will be, using (5) as the expression
of the RH member:

L [Kueg(PFCTOD, AICTOD) 2 = W(CTOD) ®

The expression for the Eq. (4) may be obtained in the form [4]:

AaJ-CI‘OD)

8
Kieq(P!-CTOD, Aa)-CTOD) (Aa)-CTOD)1/2 L( .

VZnE

where the function L(Aa/D) must be obtained for a particular geometry from linear
elastic analysis, and depends implicitly on the initial crack length, but verifies that it
tends to 1 when the size grows to infinite: L(0) = I for any geometry.

=CTOD @)

By substitution of K,,, from one equation into the other, one gets Aa/-CT0D as a
function of CTOD. From this result it is also possible to obtain P/-CTOD as a function
of CTOD.
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This particular equivalence was considered previously by the authors in [1],
under the name "R-CTOD approximation”. It has the advantage that, given the
softening function, the governing R-CTOD curve is immediately found and is size
and geometry independent. The R-Aa curves are not. Since this is an approximation,
there is no reason to expect that both loads —P and Peg— coincide. They really do
not. However, it was found, for notched beams, that the maximum load can be
accurately predicted using the equivalent J-CTOD model. As an example, for
ordinary concrete notched beams, the error was found to be less than 5% for beam
depths larger than 8 cm [1].

A Simple Analytically Computable Example

To illustrate the differences between the different equivalences, AaX-Y values at peak
load are shown in Fig. 2 versus the specimen size for a very simple geometry. The
specimen chosen is a central cracked panel subjected to uniform loading. The
softening relation is supposed of Dugdale type (rectangular softening), for simplicity,
with a tensile strength of o and a critica crack opening wc. The specimen size 18
characterized by A, (half initial crack length). The characteristic length is I, =
E-wclog. Figure 2 shows the evolution of the equivalent crack extension at peak
load versus the inverse of the specimen size for three equivalences; P-CMOD, J-
CTOD and P-CTOD, where the CMOD is understood as the opening of the crack at
its centre (this last equivalence, for brevity, has not been discussed in the paper).

ASYMPTOTIC ANALYSIS OF THE EQUIVALENT CRACK

Let us explore, now, the equivalences for large specimen sizes. The authors
developed a method particularly appropriate for analyzing cohesive crack models
when the specimen size is large [5, 6] and some results will be briefly summarized
here.

It is assumed that the size of the cohesive zone, ¢, remains bounded as the
specimen size (characterized by D) grows and that the stress and displacement fields
can be developed in series of ¢/D. The zeroth order asymptotic approach is obtained
when terms of the order of ¢/D are neglected. When the linear terms are also included
—neglecting terms of the order of (¢c/D)?>— the first order approach is under
consideration.

For zero order approach, the stress and displacement fields far from the cohesive
crack tip are the same as the corresponding fields of an elastic crack of length ay.
This is a well known far field property. A not so obvious result obtained using the
asymptotic analysis is that the cohesive zone length ¢ may be expressed as:

nE _CTOD? i
B TEYY 2>-2
¢=73 WHCTOD) <" > ®

where all terms have been previously defined, except { = x/c, (x is the coordinate of
a point inside the cohesive zone, measured from the initial crack tip) and <> means a
weighted average value on the (0,1) interval. The weight function is the solution of
the asymptotic problem as formulated in [5], and depends on the softening function.
More details, not necessary for our purpose, can be found in [5, 6].
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When the first order approach is considered a new far field property —not so
trivial— is deduced:

For a cohesive material and a general geometry under mode I loading, every far field
may be approximated, up to order c/D, by the corresponding elastic field of a crack
of length ay + AafF , where AaFF , is an effective (or equivalent) crack increment
given by

AdFF = c <> €
where <{> has the same meaning as before.

Far Field (FF) Equivalences

Let us consider the equivalences based on variables associated with fields far away
from the cohesive zone (FF, far fields). Among the three equivalences mentioned
before, the equivalences P-u and P-CMOD belong to this class when the specimen
size is very large. In fact loads are applied on the boundaries and u is the associated
displacement, the same happens with the CMOD.

The far fields of both specimens —the cohesive one and the elastic equivalent—
coincide for very large sizes, according the results just mentioned. In consequence,
when the values of P and u are imposed, also the values of CMOD will coincide and
the same will happen for other far field variables. This result has an important
implication on the equivalent elastic cracks i.e., all equivalent elastic cracks based on
far-field variables should coincide for very large sizes. For the equivalences
considered here we have:

FF P-
a = A

P-CMOD
Aa_ = Aa_ a

oo

(10)

where subscript e means infinite (very large) size.

It is possible to derive a lower bound for AaF: as a function of CMOD. From the

results (8) and (9) and the Bunyakovsky-Schwarz inequality the lower bound is
found as:

AaT = <C>—1tE cron _<t> 1B _CToDS (1
oo = C =732 WHCIOD) <(112>2 32 W(CTIOD)

Other Equivalences

When the variables chosen for the equivalence are related with the cohesive zone
the far field property can not be exploited. This happens, for example, with the
variable CTOD and with the e(}uivalcnce J-CTOD. In principle, there is no reason to
suspect that Aa’-CTOD and AaFF should coincide for very large sizes, and we will see
that they do not. Indeed, the infinite size limit of the J-CTOD effective crack increase
is obtained from (6) and (7) by putting D — e and taking into account that (0) = 1.
The result is:

sctop TE  CTOD?

A" =737 WHCTOD) 2
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which coincides with the lower bound found for the Far Field effective crack
extension. This means that, although many equivalences merge for very large sizes,
not all equivalences coincide. In particular we have found that
P-u P-CMOD J-CTOD
a _  >ha

AT =pa" = A 13)

A Further Look to the Example

The behaviour for very large sizes of the equivalent crack extensions for the example
previously defined, is represented in Fig. 2 as the trend in the curves in a
neighborhood of the origin. The ordinates at the origin are easily obtained for the
Dugdale-type of softening because the peak load occurs when CTOD = wc. Hence,
from Eq. (12) it is easily found that

2

scrop _ TE e =
A peak = 32 Wewo) ﬁlch (14)

The two equivalences, AaP-CTOD and Aa’-CTOD, although different for small
sizes, merge for very large sizes as shown in the figure.

For rectangular softening the relation <{>1<li2>2 is 4/3 [5] and then

FF pCMOD T

Aa_ = Aa " =57l (15)
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Definition of a general equivalence between the actual (or cohesive) specimen
and a virtual elastic specimen.
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Influence of specimen size on some equivalent crack extensions at peak load
for Dugdale model (rectangular softening) and center cracked panel.
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