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THE FLEXURAL STRENGTH FUNCTION FOR CONCRETE BEAMS
WITHOUT INITIAL CRACKS

Yuting Zhu™*

The fictitious crack model is applied to develop an analytical
flexural strength function for an un-notched concrete beam with
rectangular cross-section. It is assumed that plane sections in the
ligament remain plane and that the crack edges remain straight. A
relation between the ultimate bending moment M, and the
brittleness ratio d/lly, is given. The values of flexural strength
obtained from the present study are in excellent agreements with
FEM analyses for various brittleness ratios dfl .

INTRODUCTION

Since Hillerborg and his colleagues [1] introduced the fictitious crack model (FCM)
to represent the fracture zone in concrete, many concrete fracture specimens and
concrete  structures have been analyzed successfully by this model, see, e.g.
Gustafsson [2]. On the other hand, the fracture analysis based on the FCM requires
the use of a finite element code which might be too cumbersome for some simple
situations, e.g., to find the ultimate load carrying capacity of concrete beams. An
analytical solution would make hand calculation possible and allow parametric studies
such as for example the size effect in a straightforward manner. It is, therefore, of
interest to develop approximate analytical solutions based on some simplifying
assumptions.

If the developing path of the fracture zone is assumed in advance, according to
FCM, a sharp crack with distributed wedge forces (i.e., cohesive stresses) can be
arranged along this path. Take this new configuration as a primary structure. The
COD influence functions of wedge forces and external loads for the primary structure
can be constructed. Then, the problem can be solved by the superposition method, to
satisfy the boundary conditions of the original structure. This is the basic idea behind
the method presented below.

SOLUTION BY FORCE METHOD

The tensile fracture analysis by the FCM is based on the following assumptions [1-2]:

(1) The fracture zone begins to develop when the maximum principal stress reaches
the tensile strength, f, (Fig 1a).
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(2) The material in the fracture zone is partially damaged but still able to transfer
stress. Such a stress is dependent on opening of the zone or "fictitious crack," w
(Fig 1b-c).

Because of the difficulties in satisfying the boundary conditions exactly for finite
bodies, solutions are usually obtained with FEM. A closed-form solution for the
fracture moment of a beam based on the FCM is presented below. We will not
differentiate between three-point bending (TPB) and pure bending. Two simplifying
assumptions are used:

(3) The plane section in the ligament remains plane.
(4) The fictitious crack edges remain straight.

If the strain-softening within the fracture zone is linear and the material
outside that zone is linear elastic, then, a bilinear distribution of normal stresses in the
cross-section where a fracture zone has a certain length a is obtained (see Fig 2):

o (y)=f,;lv—f 4% as(l—;v—f), for0<y<a, (1a)
d—y Yy~ 4
o, () =1, deiip %d—a; fora;<y =d, (1b)

where o, and o, are the outermost fibre stresses in tension and compression
respectively, f, is the tensile strength attained at the fictitious crack tip, refer to Fig 2.
These expressions, of course, hold only for 0 < w, < w, (sec Fig 1b).

The normal stresses, a; (y) and o (y) must satisfy two equilibrium conditions:
the sum of the normal forces is equal to zero and the moment of the normal forces is
equal to the external bending moment M (M = PI/4 for a point load at mid-span).
Therefore, for a rectangular cross-section of width b and depth d, we have

ag d ag d

M
[o0)dy + [, dy =0, and [o,0)ydy+ [o0)ydy =7 )
0 ag 0 ag
f\bd2 ag 0y
It follows that: M =———(1+277) or g=1+ 2rs 3)
6 d f,

where we introduced notation g=M /(f,bd?*6), r=agd and s=o/f,. The COD at the
crack mouth (point S in Fig 2) can be expressed as follows:
ag
w = CquM + [Cu(y) bor(y) dy, (4)
0
where Cgy and Cg,(y) are the influence functions of external bending moment M and
distributed wedges forces o3(y) respectively. The following two empirical formulas
developed by the author are used in this study: (As space is limited, the derivation is
not given here.)
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6a; 6a;
Cm = Eb(d - a)?’ and Cy(y) = - Eb(d - a)? (ag = y). (5)
Substituting in Eq (4) and using notation r and s, we obtain
6a; a rl+r+2rs)fid
" =Ebd—ap M~ [@-0bo@)d)="—" (6)
0

The constitutive equation that relates stress o, to displacement w,, according to Fig
1b,iso,=f, (1 —wy/w,), or
fi— s
we="g » for0=w =w, @)
sl

where K, = fi/w,, is the downward slope of the linear o-w curve. Egs (6) and (7) for
the COD at point S can be equated (compatibility condition), leading to:
r(A+r+2r)fid fi—o
1-r E_ K, - ®)
Solving Eq (8) for s, we obtain
0 1—-(B+1)r—Br
s=f= 1-r+2Br2 - )
in which we used notation B = K, d / E. When w, = w,, o; = 0. Thus, the upper
bound of the argument r can be found by equating Eq (9) to zero and solve for r:
\/BZ+6B+1—(B+1)
'm = 2B : (10)
From Egs (3) and (9) we obtain,

M _1+4r—-2r2-2BPR B 2 5 @
1=fbar/6 =1t 2rs="1_;128p » for0sr=r, (11)

When the fracture zone forms (r = 0), ¢ = 1 and also when the fracture zone has fully
developed (r = ry), s = 0, g = 1. Thus, it is obvious that g reaches a maximum G max

when the fracture zone has only partially developed (r = r.). The critical r is found
from dg/dr = 0, and so that

2B2r*-2Br+(4B-1)rr+ (2B+2)r—1=0. (12)
One real root of this equation is r.. Since the coefficients in Eq (12) are non-
numerical parameters, the final form of r is extremely complicated. An approximate
value for r_ is obtained as follows:

s 4 1 1

e=2(13723B* T3 208"
It is worthwhile to note that Ag = (9q/ar)-Ar, and dg/or = 0 at r = r., so that the error

in g;p,,(7) is much less than the error in using the approximate value 7 for r,, and

(13)

numerical tests confirmed this. Thus
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M, 1+r,—2r2—-2Br2

9max =ftba'l/6= 1-r,+2Br? =f(B), (14
in which, r, may be calculated according to Eq (13). The quantity M,/(bd?/6) is often
denoted by f. Eq (14) represents the flexural strength function for an un-notched

concrete beam with rectangular cross-section: g, = f;/ f, = f(B). Noticing that B =

K dIE, for a given material, the flexural strength depends on the size, d. There are

two extreme cases: When B - 0, Eq (11) becomes

1+r—2r2
q=—l‘_‘7_=l+2r, forO=r=r,, (15)

Here, function (15) does not have a point of maximum, but does have the greatest
value g, = 3 for r,, = 1. This agrees with the result from plastic theory. When B - o,
then r, - 0 and Eq (11) becomes g = 1, the same as predicted by the linear elastic

brittle theory. Therefore, the dimensionless number B is able to describe the
brittleness of the concrete beam.

COMPARISONS WITH FEM RESULTS

To evaluate M, according to Eq (14) we need to know the value of B. For the linear
o-w curve, B = K d/E. Many results from FEM calculation reported in the literature
are based on Petersson s bilinear o-w curve (see [2] and Fig 1c). If the stress in the
outermost tensile fibre o, > 1/3 f, when q reaches q,,,,, then only the initial slope of

the bilinear curve is decisive in the load range {0 — M, }. In these cases, it is sufficient
to use the initial slope, K;; (Fig 1c) instead of K; to calculate B. This conclusion has
been confirmed by calculations for various values of B in a practical range. Evaluating

K, and Kpl in terms of the fracture energy, G, which is the area under respective o-w
curve, we obtain the following formulas:
1 _1E 5f2_SE
Ka=3G.=21, ™ Xn=6G."6l, (16)

where [, is referred to as the characteristic length of material and defined by
I, = EGglf2 Thus we have B = (1/2)(d/l,) for linear o-w curve; and B = (5/6)(d/l;)

Cl
for bilinear o-w curve.

Using Eq (11) to simulate the loading process, the controlling parameter is the
relative magnitude of fictitious crack depth r. Following the development of a fracture
zone, the maximum relative load g, is found. (Notice, r€s(r)=0 for linear o-w;
r€s(r)=1/3 for bilinear o-w.) The g, vs B diagram shown in Fig 3 is obtained in this
way. (The load point displacement is not considered in the present study.)

To verify the validity of the approximate solution obtained from the present
study, comparisons have been carried out with our own and other researchers” FEM
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results. As an example, if linear o-w curve is used, with f, = 3 MPa, E = 30 GPa,v =
0.18, Gp = 75 N/m,d = 0.2 m and length / = 0.8 m, our FEM calculation for TPB
gives g, = (P J/4)/(f,pd?6) = 1.44. With these data, q,... = 1.43 is obtained either
by finding a maximum of Eq (11) numerically or by substituting 7 in Eq (14) directly.
Gustafsson [2] calculates the flexural strengths at values of the ratio d/l;, ranging from

0.025 to 6.4, based on Petersson s bilinear o-w curve assumption. Such FEM results,
together with the results from present formulas, are summarized in Table 1.

TABLE 1 — Comparison of results from different methods.

dfl g, B=(5/6)A/l)  qpan(Zhu) 9 max(Zhu) 9 max(Gustafsson)
bilinear o-w Numerically F.-using FEM [2]
0.025 0.021 2.221 2.215 2.257
0.05 0.042 2.034 2.025 2.074
0.1 0.083 1.837 1.833 1.877
0.2 0.167 1.646 1.645 1.675
0.4 0.333 1.473 1.473 1.485
0.8 0.667 1.327 1.325 1.322
1.6 1.333 1.213 1.211 1.201
3.2 2.667 1.131 1.129 1.129
6.4 5.333 1.076 1.076 1.088
CONCLUSION

A formula for the flexural strength of concrete based on the FCM is developed. The
results (see Fig 3) show that the transition from ductile to brittle behaviour is
governed by the brittleness number B, which is a function of material properties and
beam depth. It can be also concluded that the ultimate bending moment of an un-
notched beam is unaffected by the last part of the bilinear o-w curve proposed by
Petersson. The flexural strength function found in the present study can be applied
for both linear and bilinear o-w curves.
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Fig 1. Constitutive laws: (a) linear o—¢, Fig 2. (a) Primary structure, (b) stress
(b) linear o—w, () bilinear o—w. distribution in the critical section.
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Fig 3. Relation between 10g (¢ ) and [0g (B)- Note: g = M, /(fbd%6), B = A (dlly,), where
A = 1/2 for linear o—w, and A = 5/6 for bilinear o—w.
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