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THE CRACK-INCLUSION INTERACTION PROBLEM IN AN
INFINITE STRIP

O.S. Yahsi* and §. Abbas*

The problem of interaction between a crack and an inclusion in an
infinite strip is considered. The Green's functions for a pair of
dislocations and a pair of concentrated body forces are used to
generate the crack and the inclusion in the infinite strip which is
assumed to be elastic continuum, and to which uniaxial tension is
applied away from the crack-inclusion interaction region. The
problem is reduced to a system of three integral equations having
Cauchy-type dominant kernels. The stress intensity factors are
calculated and tabulated for various crack-inclusion and strip
geometries and the inclusion to matrix modulus ratios.

INTRODUCTION

In studying the fracture of multi-phase materials it is often necessary to take into
account among other factors, the effect of imperfections in the material. From the
viewpoint of fracture mechanics two important classes of imperfections are the
planar flaws which may be idealized as cracks and relatively thin inhomogeneities
which may be idealized as flat inclusions with "sharp" boundaries.

All of the crack-inclusion interaction problems solved by Erdogan and Gupta
(1), Erdogan et al (2), Erdogan and Xue-Hui (3), Atkinson (4) assume continuity of
displacements at the interface of the inclusion and in all of these studies in-plane
dimension of the medium are assumed to be large compared to the lengths of and the
distance between the crack and the inclusion so that the effect of the remote
boundaries on the perturbed stress state may be neglected.

In this paper a crack-inclusion interaction problem in an infinite strip is
considered. This "flat" inclusion is represented by a membrane with no bending
stiffness. The basic Green's functions for a pair of dislocation and a pair of
concentrated body forces are used to generate the crack and the inclusion in the
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infinite strip on which a uniform tensile stress, ©,, is acted far from the
crack-inclusion interaction region.

INTEGRAL EQUATIONS OF THE PROBLEM

The geometry of crack-inclusion interaction problem is shown in Figure 1. It is
assumed that the strip is under a state of plane strain or generalized plane stress. It is
further assumed that the inclusion is sufficiently thin so that its bending stiffness
may also be neglected.

Inclusion

Figure 1 Geometry of infinite strip with crack-inclusion interaction.

Referring to Fig.1, consider the stresses and displacements due to a pair of
point dislocations on the x axis, a pair of concentrated forces on the line
0 = constant, and general solution for an infinite strip under the effect of uniform
tensile stress 0, Let Og;j, Opijp Ogije (4, j) = (x, y) or (4, j) = (1, 8) be the stress
components due to dislocations, concentrated forces and strip, respectively. The
total stress state in the elastic strip may therefore, be expressed as

O'ij(x, y)= odij(xv y) + O'pij(x, y) + O'sij(x, y) G,) =y (€))]
By assuming that the dislocations are distributed along a < x <b, y = 0 forming a
crack, for a pair of point dislocations with densities g and h defined by

:‘g—[v(x,+0)-v(x,»0)]=g(x), a<x<b, 2a)
X

—a—[u(x,+0)-u(x,-0)]=h(x), a<x<b, (2b)
ox
the stress sate in an infinite plane may be expressed as

__ 2w b
Ouyroy) = ——— ﬁ [Gij(t, ¥, %) ® + Hi (e, ¥, ) h] dt, 3
Gi=xY) )
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where the expressions of Gy; and Hy; are given by Abbas (5) and W is the shear
modulus and x = 3 - 4v for plane strain and k = (3 - v) / (1 + v) for generalized
plane stress, v being the Poisson's ratio.

Similarly, by using the stress expressions due to a pair of concentrated forces
Py and Py givenin (5) and by assuming that the inclusion is located along the
line 0 <r<d, 6 = constant and finally by using the following continuity and
equilibrium conditions for the inclusion

U (1,0+0)=u, (r,0-0), (s=r,0), O<r<d, (4 a,b)
Gee(r,9+0)-cee(r,e“0)=0, 0<r<d, (4C)
-p(r)=0,4(,0+0)-0,4(r,6-0) , O<r<d, 4d)

the stress components Opij can be found as a function of p(r). Their expressions are
given in (5).

Let us now consider the stress state in an infinite strip, 0 < x < h parallel to the

y axis and loaded at infinity by uniform tensile stress o,,. Using Fourier transforms
it may be shown that

Oy (XY) = Eﬁ“ [ lol (E, (@) + XE; (@) - l‘—;—1«:2 () ]e' ol
MY-

- o
lalx y

+[Ial(E3(a)+xE4(a))+%E4(a)]e e w

0<x<h ~eo <y <oeo (5a)

Osxy (%) = iﬁf‘” - [ lod (E, () + XE, () - lal/ox K;" : Ez(a)]e' letlx }
T v -

olx - oy
+[-|a:(E3(a)+xE4(a))-|a|/aK;1E4(a)]e" \e da

0<x<h -0 <y <oo (5b)
where E;, E,, E; and E, are unknown function of o and are determined from the
stress free boundary conditions at x= 0 and x = h. Thus, if one substitutes G ;;
expressions, (3), and (5) into (2) and the resulting equation into the boundary
conditions

0,0, y) = O'Xy((), y) = Ox(h, y) = ny(h’ y)=0 (Ta-c
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the unknown functions E,, E,, E; and E, can be expressed in terms of the unknown
functions p, h and f.

Thus, the complete solution of the problem will be obtained once the unknown
functions g, h and p are determined. These unknown functions may be determined
by expressing the stress boundary conditions on the crack surfaces and the
displacement compatibility condition along the inclusion, namely

Opw(x,0)=0, 0, 0=0, a<x<b (8a,b)

€.(r,0)=¢ (), O<r<d @&c)

where g (r) is the longitudinal strain in the inclusion and it can be expressed as (5)

1+x

d
* f p(r,) dr, (8)
A Vr

g (r)=-
81,

where W and g are the elastic constants and Ag is the cross-sectional area of the
inclusion.

Finally, by substituting (2) into (7 a-c) the three integral equations of the
problem may be obtained as follows:

b b d
j; %dt"’./; kll(t,x)g(t)dt+j; k13(ro) x)p(ro)drg

_ m(x+1)
2p

a<x<b, (&)

o

b b d
_/; %dt+ fa Ky, (t, %) h(t) dt + fo kp3(tg X) p(ry) dro=0

a<x<b, (10)
dp(ry) b b
fo ro_rdr°+f; ks, (t, 1) g(t)dt+fa ks, (t, 1) ht) dt
b T (x+1)° 2 - 2
+f k33 (ro, 1) p(ry) dry=-———oc_ (sin" 6 + cos” 0)
a K+1
O<r<d, (11)

where the expressions of kj; (i, j = 1, 2, 3) are given in (5). These integral equations
are subject to the following continuity and static equilibrium conditions
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b b
f g dt=0, f h(t)dt=0, fdp(ro)dr°=0 (12 a<)

a

Thus the system of singular integral equations must be solved under the
conditions (12 a-c). By using function-theoretic method it can be shown that the
unknown functions g, h and p are of the following form (5):

G(t) H(t)
g = , h() = g
(- t)1/2 (t _a)l/?. (- t)1/2 @t _a)1/2
_ F(r)
p() = m (13 a-¢)

where G, Hand F are bounded functions. The solution of (9-11) subject to
(12 a-c) may easily be obtained by using the numerical method described in (5).

After determining the density functions g and h the stress intensity factors at
the crack tip may be defined and evaluated as follows:

k;(@= lim Y2(a-x) Oyy (x,0) = 2l lim Y2(x - a) g(x) (14 a)

X —>a K+1x—>a

ky(b)= lim VY2(x - b) Oy (x,0) =- 20 lim Y2(b - x) g(x) (14 b)

Xx—b K+1x-b
ko (@) = lim V2(a-x) Dy (x,0)= 2 lim Y2(x - a) h(x) (14 ¢)
x—a K+1lx—>a

ky(b) = lim Y2(x - b) Oy (x,0)=- .. lim ¥2(b - x) h(x) (14 4d)

x—>b K+1x-b

Similarly following the procedure given in (5) the mode I stress intensity
factors at the inclusion tip may be defined as follows

Kk ©=—1 tim 2t p , (15 a)
2(k+1) >0

K @=-—1 lim 26 @ p) (15 b)
2(k+1) r>d
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RESULTS AND DISCUSSION

The main interest of this study is to evaluate the stress intensity factors at
the crack and inclusion tips in an infinite strip for various configurations of
crack and inclusion for different values of the stiffness parametery
(Y= (1 +xy) /(A ug (1 +x)) . These values of the stress intensity factors are
given in Figure 2-5. One should also note that the stress intensity factors given in
figures are normalized as follows:

Ki(s) = i®) (s=a,b) (16 a)
1 m ’ £

60

for the crack, and

KO =k /Ky, (=0,d), ko=- ' o Yd72 (16 b)
2k+1

for the inclusion.

From the analysis of Figs. 2-4 it can be seen that the first mode stress intensity
factor at the crack tip near the inclusion and second mode stress intensity factors at
both end of the crack decrease as the stiffness of the inclusion increases. The first
mode stress intensity factors at the inclusion at the and other end of the crack
increase as the stiffness of the inclusion increases.

These figures also show that the normalized stress intensity factors k;', k' are
strongly dependent on d/l ratio and they all increase with the increase of d/I ratio.

For the cases shown in Figs. 5 due to symmetry of the problems the second
mode of stress intensity factors are zero and the first mode stress intensity factors at
the crack tips are independent of y. Whereas the stress intensity factors at both ends
of the inclusion decrease as 7y increases.
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Fig. 2 Stress intensity factor ratio k; in an infinite

strip containing a crack and an inclusion; Vv = 0.3.
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Fig. 3 Stress intensity factor ratio k, in an infinite
strip containing a crack and an”inclusion; Vv = 0.3.
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Fig. 4 Stress intensity factor ratio k, in an infinite
strip containing a crack and an inclusion; v = 0.3.
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Fig. 5 Stress intensity factor ratio k: in an infinite
strip containing a crack and an inclusion; v = 0.3.
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