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THE BEHAVIOUR OF A PERPENDICULAR PENNY-SHAPED-CRACK
SITUATED CLOSELY TO THE FREE SURFACE OF A HALFSPACE

F.D.FISCHER *), K. Mayrhofer ¥*)

The comparison of published results for
opening mode stress intensity factor
solutions for a penny-shaped crack situ-
ated closely to the surface of a semi-
infinite solid showes a discrepancy
between the alternating method solution
and the singular integral equation solu-
tion. To close the gap a basic solution
necessary in the alternating method proce-
dure is extended in a general form.

Using the singular integral equation new
results are obtained for cracks positioned
very closely to the free surface.

INTRODUCTION

Flaws 1in pressure vessels, machine components and
structural components are often approximated by
circular, elliptical or semi-elliptical cracks. When
the crack 1is situated in the neighbourhood of a
stressfree surface, the theoretical analysis becomes
extremely difficult, since it involves additional
geometric parameters describing the dimensions of the
elastic solid. The 1local stresses 1increase with
decreasing distance between the free boundary and the
crack (the opposite holds when the crack approaches a
rigid boundary). The study of embedded planar cracks
near the free surface of a half-space subjected to
various loadings has been the subject of special
research in the past. A review of literature can be
found by Panasyuk et al (1). Solutions for penny-
shaped cracks situated parallel to the free surface of
a half-space have recently been published by Kuzmin
and Ufland (2), Guz and Nazarenko (3) and Srivastava
and Singh (4).
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Stress intensity factors for an embedded ellipti-
cal crack normal to the boundary in a halfspace
approaching the free surface, are also available.
Shah/Kobayashi (5) solved this problem using the
Schwarz-Neumann alternating method as described by
Kantorovich and Krylov (6). The analysis from Nisitani
and Murakami (7), Isida and Noguchi (8) has been
performed using the body force method. An approximated
Mode-I-solution is available from Smith and Alavi (9)
using the alternating method too. Kaya (10) solved the
same problem by a singular integral equation.

Comparing Alavi's and Kaya's stress-intensity
factors for the point on the crackfront nearest to the
free surface (Polarangle 6 = 180°) for the aspect-
ratio h/a = 1,1 discrepancies of 10% are found. The
work reported is an extension and a refinement of the
work by Alavi to close the gap. Based on the singular
integral equation new results are computed for
penny-shaped cracks very close to the free surface.

THE ALTERNATING METHOD - SOLUTION PROCEDURE

The alternating method (11, 12) is an iterative
procedure which may be used to solve problems with
complicated geometry. Alavi used it for the problem of
a circular crack in a semi-infinite solid (Figure 1).
The stress-free condition at x = -h may be satisfied
by an iterative method of adding various solutions
together. The method is explained by the following
steps shown in Figure 2.

Step 1. It is assumed that there exists no crack. The
normal stresses due to applied load at the location of
the crack surfaces are found.

Step 2. Now the existence of a crack is taken into
account. The normal stresses found in step 1 must then
be removed by applying equal and opposite normal
stresses to the crack surfaces. In order to do this,
it is necessary to find a solution for a circular
crack embedded in an infinjte solid subjected to an
arbitrary normal loading on the crack surface.

In this paper the authors present a generalisation

of Alavi's penny-shaped crack solution to compute the
normal and shear stresses on the plane x = -h.
Step 3. These residual stresses on the surface plane
are brought to vanish by applying opposite surface
loadings on the boundary of an uncracked semi-infinite
solid. The normal stresses on the «crack surface
resulting from this removal of stresses from the free
plane are then computed. Due to symmetry the shear
stresses vanish.
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Alavi used for this "freeing-process" basic
solutions for a semi-infinite solid when a small
rectangular area of its surface 1is subjected to
constant normal and shear stresses. For this step a
new half-space-solution for a bilinearely distributed
normal and shear stress over a rectangular area has
been derivated and is in preparation for publication.
Step 4. By applying opposite stresses, §' is erased
from the crack plane, but this will agaifzcause some
residual tractions on the x=-h plane.

Step 5. Steps 3 and 4 are repeated until the residual
stresses on the crack plane and on the x = -h plane
become negligible.

The final solution is obtained by superposing the
results of each iteration step.

PENNY SHAPED CRACK SOLUTION

Consider an elastic infinite solid containing a

circular crack of radius a in the plane z = 0 which is
opened by a normal pressure p (r, 8) symmetrical with
respect to the plane 2z = 0. Using cylindrical

coordinate system (r, 6, z) and expressing the loading
term in a Fourier cosine series

(%)'F(F.O) = Z B, (r) ces(ne)
n=0

the problem reduces to the following dual integral
equation for the unknown functions fn (f):

S E-Jn(fr).{n(g).éz§4i§ =B, o0<rg1

{3,660 4a®-€78dg = 0 r>1

Expanding the Fourier coefficients Bn(r) into the
@

power series P
B (r) = Z Cn . rP
n P=0

the final expression for fn(f) arises
-3 1 3
1 PP Ml PHS
{n(§) =V?Z Cn H,.,f j"l z Jn+4i(§"l)d"l (5)
P=0 0
with e _[EF2

2
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For values r and z greater than unity, the series
expansion of the Bessel function J (fn) was used.
Performing the 1ntegrat10n f (§) resuiés

4 (6 = ZZ Al b Chg28+
where P20 R=0
Aln,p k)= e H

2R+ (2k+n+p+3)- r(k+n+3)

The stress components, e.g. ng, result now as

T o “ Zn m(ne)Zi A(n,r,&)C .S(n,2k+n+2).
n=o P=0 R=0

The integrals @ -z
Scmmy={ £ 6n€ el

necessary for expressing the stress components were
computed by the use of recurrence formula given in
(13). For this case the series converge after only few
terms.

For values of r and z 1less than wunity, the
integral in (5) was evaluated by Alavi in closed form
only for wvalues n = p = 0, 1, 2 due to the extreme
complexity of including more terms in the series.

GENERALIZED SOLUTION

In (14) an exact solution for the integral in (5) is
given using the Lommel functions Suon (§),
’

S')l"f Jn(§'q)x1'q = §.m-1. [(m+n-4)§~]n(§)- sm-4, n_1(§) =

0
m+n+1)
,m I >0.
—€J (§).S o+ ] §
: +
§n-1 |"(n ? 1) Re(m+n)>-1
Applying some recurrence formulas for S (g) (a
detailed description is given in (15)) Tne integral

(5) can be computed analytically.

SINGULAR INTEGRAL EQUATION SOLUTION

The singular integral equation for a semi-infinite
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solid with a penny-shaped crack perpendicular to the
boundary, located on z=0 plane and occupying a region
specified by (x,y)€f) can be expressed as

% W (x,,Yo) dx, dy,

n [(xo- x)z + <yo_Y)z ]3/2.

+ S‘XW(XO.YQ)-K(" -Yoixiy)dxodyo
Ju

_dr@a-v)

“ “POQY) )

1
[(xo+x+26 Y+ (v y)z]m

—6{(1-2v) 1 Av4 )
P =e{(t-2v) gl o+ 2 (L)

1 + ]_
3(R+x+x+24) R*R+x SFX+2h)?

where K (xo,YQ‘, x:Y) = + F(Xo,)(,;x,‘/)i

-(1-2v)(x x4 x+28)

o+ X +2],)z
s

~(-2v)2v & 2 + Ris(":lw)(x%)};

R =Vl +x+2 R)% + (y-y)>

The behaviour of the unknown crack opening displace-
ment W(x,, y,) near the boundaries of Ll can be

represented by a weight function ”ixo, Y)Yz
We Yo) = KorYo)- W(Ko,Yo) = 4o, yo) Y@ - x 2 —yZ

The new unknown function g (x,, yo) is now approxi-

mated in terms of a double powers seéeries
N4 N2

1(’%%) =Z Z AL] xol yoj
=0 j=0
To determine the (N,+1)(N +1) unknown coefficients a. .
the integral equation is“evaluated at certain col1d3

cation points (Xgr Yi)ELL:

XK =096.a.cos¢, Yk=096.4a.sn¢,

_ 6+ 6 = 6+E‘ .
R acese, oy J—,,o a.sng,

0
V61°€a.m:g ) Yk = %‘f‘a.m? >

K
Xk
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where 23+1) Ko
Y’-( i+ T,}=04,.-,9; r1>»(N-h0(N1’4)

Finally the follow1ng linear algebraic equations are

obtained:
N
Yx(4-V)
i L] [CL]( KV +Hl](xp‘/|o] —ply y)-

l.=0 j=0
The two-dimensional 51ngu1ar integrals over a circular

region
o yb J‘l"xo'-yb ‘AXAJ
CL (mel() % 0 %Yo
] [(xe=xt+ =m0 |

are computed with the help of a computer program from
the closed form expression derived in (10).
The regular integrals

Hig®omo = SXX y.,{@ -xZ - y2 Koo Xk d%, A

was solved u51ng the NAG/LIB Subroutine DO01lJAF.
Solving these equations using the method of least
squares (NAG/LIB Subroutine FO04JGF) the stress inten-
sity factor is calculated from

&4 e %(ause ane) .

Results for constant pressure p(x,y) = -p,, and a
Poisson's ratio of ¥ = 0,3 are shown in Figure 3.

SYMBOLS USED

a = circular crack radius (mm)

v = Poisson's ratio (-)

P = pressure distribution (N/mm? )

u = shearing modulus (N/mm’)

¥y 2 = cylindrical coordinates, nondimensionalized

through division by the crack radius

9 = pressure distribution, nondimensionalized
through division by the shearing modulus
Jn(§) = Bessel function of the first kind of order n
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Gamma function

Sm'n(f) = Lommel function

R

¥

(1)

(2)
(3)
(4)
(5)

(6)

(7)
(8)
(9)

(10)

(11)
(12)
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= plane crack area (mm?)

finite part integral, see for definition (16)
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ILLUSTRATIONS

Figure 1. Penny-shaped crack
near a free boundary
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Figure 3. Stress intensity factor for an penny-shaped
crack in a halfspace in simple tension
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