TESTING OF CRACKING SENSITIVE MATERIALS BY THE METHOD OF X-RAY FRACTOGRAPHIC

V. Yu. Saprykin*

The study of failure toughness (KIC) and evalution of plastic deformation zones in the fractures of structural steels of different strength levels ($G_{0,2}=256...$... 1050 MPa) allowed to establish the correlation between KIC and the size of prefailure microzone h_A [1].:

$$K_{Ic} = \left[\pi (2h_A) \, \, \mathcal{S}_{0,2} \, E \, (1 - V^2)^{-1} \, \ln \, \left(1 - \Psi \right)^{-1} \right]^{1/2} \tag{1}$$

where: $\mathcal{G}_{0,2}$ - yield strength; E - Young's modulus; \mathcal{V} - Poisson's ratio; \mathcal{V} - sample cross-sectional area contraction ratio.

In microzone h_A the microzone of failure (the nuclews of the crack with radius r_* with deformation energy critical density W_C) being formed, K_IC and r_* can be correlated as follows:

$$K_{Ic} = \left[r_* \, W_c \, 2\pi \, E / (1 + \nu) (1 - 2 \, \nu) \right]^{1/2} \tag{2}$$

where $W_{\mathbf{C}}$ is for specific failure work [2]. From the equations (1) and (2):

$$r_*/h_A = G_{0,2}(1-2\nu) \ln(1-\psi)^{-1}/W_c(1-\nu)$$
 (3)

 $r_*/h_A = G_{0,2} \left(1-2\,\nu\right) \ln\left(1-\psi\right)^{-1}/V_C \left(1-\nu\right)$ (3) Assuming that brittle failure $G_{0,2} \cong S_k$ (where S_k is the real rupture stress), $V_{\min} \cong 0.001$ and accounting (3) we can find r_*^{\min} , and from equation (1) - the minimum value $K_{1c}^{\min} = K_{ICO}$, corresponding to the limit embrittlement of the material, when the plastic deformation energy in zone h_A , comparable with the value of structural parameter - can be neglected.

$$K_{Ic} = \mathcal{L}_{y*} \sqrt{\pi r_*}$$
 (5)

or:

$$K_{Tc} = G_{y*} \sqrt{\pi r_{*}^{min}}$$
 (6)

 $K_{Ic} = G_{y*} \sqrt{\pi r_{*}^{min}}$ (6) where: G_{y*} stress G_{y} at the distance r_{*} from the crack

^{*} Polytechnic Institute, Frunze, USSR

The calculations based on equations (1 ... 5) with an account of experimental values h_A, S_K, E, $\mathcal V$ and $\mathcal W_{\mathbf C}$ showed that for steels the value of $\mathcal G_{\mathbf y*}$ varies insignificantly and equals (0,115 ... 0.135) E.

The knowledge of K_{ICO} allows to define the minimum critical size of defect (crack) and to estimate the value of energy intended for the formation of plastic deformation zone (K_{IE}) in material in question at given temperature (ti). $K_{IE}^{ti} = K_{IC}^{ti} - K_{ICO}$ $K_{IE}^{max} = K_{IC}^{max} - K_{ICO}$ $K_{IE}^{max} = K_{IC}^{max} - K_{ICO}$ The brittle failure giving: $K_{ICO} = K_{IC} = K_{IC}^{max}$ and $K_{IE}^{min} \cong 0$, and quasibrittle and ductile failure giving: $K_{ICO} < K_{IC}^{ti} < K_{IC}^{max}$ and $0 < K_{IE}^{ti} \le K_{IE}^{max}$ the difference $K_{IE}^{max} = K_{IC}^{max} - K_{ICO}$ characterises the maximum plastic deformation energy in material with crack.

Nondimensional value of $k_{\mathcal{E}}^{ti} = K_{I\mathcal{E}}^{ti} / K_{I\mathcal{E}}^{max}$ can be taken as failure toughness safety factor at a given temperature ti. In the tough-brittle transition temperature interval $k_{\mathcal{E}}^{ti}$ can vary within the range: $0 \leq k_{\varepsilon} \leq 1$.

REFERENCES

- Saprikin, Yu. V., Burba, V.E., Akimova, S.D.: Definition of static toughness of failure K_{IC} by the method of X-ray fractography. IX-th Congress on materials testing, Budapest, 1986., Part J. 240,250 I., pp: 349-350.
- Romvary, P., Tot, L., Nard, D.: The analysis of propagation fatigue cracks regularities in metals [2] - Problems of strength, 1980, N.12, pp: 18-28.