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STUDY OF CRACK TRAJECTORIES IN THIN CYLINDRICAL SHELLS: NUMERICAL
ANALYSIS AND EXPERIMENTAL VALIDATION

A. La Barbera*, M. Marchetti*, s. Tizzi*

Crack paths in cylindrical shells have been analysed in
order to correlate their geometrical characteristics to
the mechanical state. Crack paths predictions have been
carried out by using a variational principle that is
equivalent to the maximization of the energy released
in the body. The Strain Energy Density criterion has
been also employed by using the stress-strain fields
in the cracked shells, evaluated by Finite Element Me-
thod. An experimental investigation by using the Caus-
tics Method has been carried out on plexiglas cracked
shells.

INTRODUCTION

The equilibrium and propagation of cracks have been extensively in-
vestigated in the last decade. Both the thermodynamical and the me-
chanical description have been used to study the conditions governing
the extension and evolution of cracks.

Rice [1] and Gurtin [2] have studied the thermodynamics of Grif
fith cracks giving a refined interpretation of the Griffith criterion
for quasi-static crack growth. Rice has found some "global restric-
tions" on the quasi-static brittle fracture. Gurtin has shown that
Griffith criterion is a necessary condition for crack initiation in
non-linear thermoelasticity, provided that some proper conditions are
satisfied.

Fracture criteria are based on both energy balance equation(glg
bal condition) and local stress quantities. The characteristics of
crack trajectories are correlated to the mechanical state occurring in
the neighbourhood of the crack tip and to energy exchange between’dig
ferent zones of the whole structure [3].

Among such fracture criteria, the Maximum-Stress (MS) , Minimum-
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Strain-Energy-Density (SED) and Maximum-Energy Release Rate (MG) have
been used to predict the crack paths and the critical load at which
unstable propagation occurs. Wu [4] has shown that the MG criterion
is able also to take into account the coupling phenomena between pla
ne and antiplane loads.

In this paper, cylindrical cracked shells have been studied.
Initial curvature gives rise to coupling between in-plane and out-of-
plane behaviour, that means the fracture problem must be solved by
taking into account both the plane and antiplane loads.

To predict the crack path the MG and the SED-criterion have been
employed. The MG criterion is based on the principle of minimum po-
tential energy and by a proper formulation of the corresponding func
tional a simple procedure for crack paths prediction has been deve-
loped.

GOVERNING EQUATIONS AND ELASTIC FIELDS

Cracked shells theory has been developed by several authors and dif-
ferent solution procedures and methods have been proposed, [51-[7].
Most of mathematical models refer to shallow shells theory by consi-
dering a restricted domain containing the crack. Naghdi [8] has pro-
posed a set of equations for shallow shells, where the transvers shear
deformation is taken into account and from which the Marguerre's equa
tions can be recovered.

The shallow shell equations can be obtained by projecting the
net of coordinates of the middle surface on to a plane and by writing
the field equations in this new net of coordinates. Neglecting the
terms containing squares and product of z and its derivatives compa-
red to unity the governing differential equations can be obtained.
Let us consider the equilibrium equations:

Nij,j =0 (1.a)
vii + Lzl =0 (1.b)
Vi = Mij!j (1.C)

The stress-strain relations are expressed by:

& = 7 [(uLj+‘ﬁﬁ) +(Zq Wi 2 Wi )]

1 (2.a)
E‘] = E [—\)Nkk élj + (1 +V) N1}]

1
M = 5D [29m ) B # (1 -V, + %501 (2.b)
Y, = T W (2.}
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Introducing the stress function defined by:
— 2 ..

N = (V F)fS,J—F,ij (3)
and its substitution into the compatibility equation yields the fol-
lowing fourth-order differential equation, governing the extensional
behaviour:

VA(VF) = Eh(2z,),w,,, - Zr11 Wiz2 = Zspp Wipp) (4)

Substitution of the stress-strain relations into the flexural equili
brium equation yields:

D V'w = [ (V2z2) V?F - z,ij Fujj | (5)

We have thus two coupled fourth-order differential equations in
terms of the two unknown functions: w and F. For a cylindrical shell
one of the radii of curvature is infinite while the other is constant.
The coupled differential equations (4) and (5) can be reduced to a
set of singular integral equations, whose solution can be obtained
analytically, for small values of the shell parameter (which is pro-
portional to the crack lenght-shell radius ratio), or numerically.

In this work, the displacement and stress functions have been
expressed in the following form:

w=2X w enX cos (ny/R) (6.a)
F = kw (6.b)

where k is a proportional factor to be determined.
By substituting the (6) into the (4), (5) the characteristic
equations are obtained:

Eh
o al +af + (n/R)* - 2a2(n/R)? = 0

k
a, + (n/R)* - 2(n/R)2a2 + = % =0

that, if k =% jVEhD, can be reduced to the alone equation:

n i 2 2 J Eh 2 _
an + (n/'R) - 2(n/R) (ln % ; T an =0 (7)
Once the solution of the characteristic equation has been deter
mined the displacement and stress functions are defined, and the
stress and displacement fields can be evaluated. For an arbitrarely

oriented crack the governing equations are the followings:

52 1 32 2 32
VF - Eh(—i- - 3 + — Y R ———%—) =0 (8.a)
Ry 9dx Ry Ody R, 9xdy
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3%F
dy?

3%F
9x?

1
A (___
w + 1/D B

N2
3 o 3F):o (8.b)
y Rm

1
4 —_—

RX
where:

Ry = R/sin’a R, = R/cos’a Ry =VRgR, = R/(sina cosa)

y
If the displacement and stress functions are expressed as:
w=2X, W, X eJBnY ang P o= kw (9)

the characteristic equation is:

2 2

o g jong

N 2 2 L % n n n 9n
a. - 202 g- +g_ + jS (——— - — +2 ———————) =0 (10)

n n n n RY RX Rm
where S = VEh/D. The corresponding roots have been evaluated numeri-
cally (once the g, have been prescribed). To the perturbation solu-
tion, we must add the solution of the uncracked shell, with uniform

stresses distribution.

CRACK TRAJECTORIES PREDICTION AND FRACTURE CRITERION

Let us consider a net of coordinate curves (EI,EZ) on the middle sur
face of a shell. By a parallel projection on to a plane T, new coor-
dinate curves are obtained and a continuous and one-to-one correspon
dence between points of the surface S and of the plane T is esta-
blished, Fig. 1.

S
70§, &)

Fig. 1 - Element of middle
surface S and its
projection on a
plane T.

We are concerned here with crack trajectories on the middle sur
face of shells, which can be described by a certain function fS(gl,gz)
where Ei are the curvilinear coordinates on S.

By virtue of the correspondence between &, and x;, the function
describing the crack trajectory can be also expressed in terms of the
projected coordinates x;, i.e. f“(xl,xz).

By introducing a projection operator I, and its invers 7! the

following transformations hold:
H[fs(gu gz) ] = f"(xll X5)

= (11)

M LE™ g, o) 1 = £9%E,,85)
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To find the projected crack trajectory we follow the method des
cribed in [9], where a variational condition is used. We outline_
briefly here the basic concepts of the method. Assuming a perfectly
elastic body, the Griffith fracture criterion can be expressed in the
following form:

§f[2r - pjylas = 0 (12)
S

where P; = - 0;. n; are the stress components acting on planes coin-
ciding with the crack surface, Ojj are the stresses occurring in the
uncracked body, n; are the component of the outward normal to the
crack surface, u; are the displacement components of the points of
the crack surface for the cracked body loaded on the crack surface
by a pressure pj -

To apply the variational condition (12) the displacements u; are
needed. They can be evaluated by mapping the crack into a circle of
unit radius, and the region outside the crack into the outside of the
circle. The details of the method are described in [9]. The numerical
procedure is based on the approximation of the trajectory with a pie
cewise curve, consisting of segments characterized by their length
1k and slope ék to the x axis. The following equation for the trajec
tory is obtained:

k-1 k-1
y = x(-— Z 1mn cosém)tanék + Z Ly siném H
m=0 m=0
k-1 k (13)
1m cosBy < x < Z 1y, cos by ; k =0, 1,2 ..
m=0 m=0

Following the same procedure as in [9], the energy functional
is expressed as a function of a certain number of variables:
F (p; By By e By s I = | 197 - p| uj (_pj,éo,el s Brye I V] A (14)
S
where L, = 22:0 1 -
The proble.. is now reduced to that of finding extreme points ot
F(pj,én,Ln) tha’ yields the following system of equations:

oF
— =0 i=1,2,...n
EH
(15)
o
3Ly .

The transformation of the projected crack trajectory to the ac-
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tual one, must be carried out by taking into account the transforma-
tion of the metric tensors of the plane T and the middle surface S.

RESULTS AND DISCUSSION

The elastic fields in the neighbourhood of the crack tip have been
evaluated for cracked cylindrical shells characterized by small
shell parameters. The loading conditions were of uniform traction
along the shell axis. The stress resultants and SED distributions
have been computed for single and mixed mode crack configurations.
Fig. 2.a and 2.b show the extensional stress resultants evaluated
along a circle centered at the crack tip for two different polar dis
tances. These distributions sound like those of cracked plate, where
a hydrostatic stress field occurs for 6 =0 at small distance from
the tip. At higher distances from the tip, the stresses are no longer
hydrostatic. The SED, reported in Fig. 2.c, has a maximum for 6 =0
and its distribution is quite dissimilar from that of cracked plate,
where the maximum occurs at 6 =70°. Fig. 3.a shows the distributions
of the same quantities around the tip of an inclined crack. In Fig.
3.b the principal stress resultants are reported. The maximum values
of N; and N, occur at © 2 -30° and 6 = - 20° respectively while the
maximum SED value occurs at 6 = -20°.

Elastic stress fields and SED distributions have been also eva-
luated by FEM. The computations have been carried out by using a fini
te elements code based on the "p-convergence" theory of FEM and in
which "hierarchic elements" are used.

Three-dimensional elements (hexahedron and pentahedron) have
been employed and Triangular-Quarter-Point (TQP) elements have been
used to model the stresses singularity at the crack tip. The energy
release rate have been evaluated by the virtual Crack Extension (VCE)
method. Fig. 4 shows the stresses and SED distributions around the
tip of a circumferencial crack. In Fig. 5 the SED distribution for a
mixed mode configuration is reported. The maximum (SED)jjp occurs at
g2 -38°. Fig. 7 and 8 show the SED distributions, for a circumferen
cial and inclined crack, evaluated by using the stress intensity fac
tors values computed by the Caustic Method [10]. It can be seen that
the stresses and SED distributions evaluated by using the closed so-
lution can be effectively used only for a qualitative analysis. of
course quantitative computations cannot be carried out because singu
lar eigenfunctions are necessary to model the singularity in the elas
tic fields at the crack tip. The elastic fields evaluated by the FEM
show that at the crack tip a 3D stress field occurs.

The variational method, that is strictly correlated to the MG
_riterion allows to take into account the redistributions of the stress
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fields with crack growth. This characteristic is particularly useful
for elasto-plastic fracture problem.

CONCLUDING REMARKS

Application of fracture criteria for the prediction of quasi-static
unstable crack propagation, is an important step in failure analysis
of structural components. In this paper a simple method for the pre-
diction of crack trajectory, in shallow shells, has been proposed.
Its application has shown that it provides satisfactory results for
initial stages of crack propagation, where the assumption of shallow
ness can be considered to be valid.

When the crack lenght increases to an amount such that the shal
low shells theory cannot be applied, the proposed method fails to gi
ve good results. This can be explained because:

- the elastic fields are affected by some errors deriving from the
lack of correctness of the governing equations;

- the employed projection of a restricted domain of the middle sur-
face is no longer applicable.

The proposed variational condition, as fracture criterion, is
based on a general physical principle, that is the minimum of the to
tal potential energy. It follows that the fracture criterion is cor-
related to overall conditions in the structure, and it cannot take
into account microstructural parameters describing microscopic pheno
mena. Nevertheless, the variational condition is derived from the
Griffith criterion, which has been interpreted and widely analyzed
from the thermodynamical point of view.

About the elastic fields evaluated by using the series expan-
sions of the displacement and stress functions, the following remarks
can be done:

- satisfactory results can be obtained by using high order terms in
the series expansion;

— asymptotic computation are necessary in order to obtain satisfac-
tory qualitative results;

- the proposed solutions don't lend for quantitative computation.

The numerical results obtained by the FEM have shown a good
agreement with the expected distributions. The SED criterion, used
on the basis of the elastic fields evaluated by the FEM, has provided
accurate results for the prediction of fracture angles. It has been
confirmed that it's able to take into account of three-dimensional
fields that occurs at the crack tip.
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for single mode confi-
guration (R=0.015 m,
2a=10"% m).
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Fig. 4 - Stress resultants (a) and SED (b) distributions around the
tip of a circumferencial crack, evaluated by FEM (R =0.015 m,
2a=10"2 m, R=90°).
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Fig. 5 - Strain energy density distribution around the tip of a
inclined crack evaluated by FEM (R=0.015 m, 2a=10"° m,
B=60°).
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Fig. 6 - Experimental reflected caustic from a circumferencially cra
cked shell (R=0.025 m, 2a=10"2 m, B=0).
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Fig. 7 - Strain energy density distribution, evaluated by the Caustic
Method (R=0.025 m, 2a=10"2 m, £=0°).
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Fig. 8 - Strain energy density distribution evaluated by the Caustic
Method (R=0.025 m, 2a=10"%m, F=30°).
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SYMBOLS USED

= half crack lenght

= shell thickness

= polar coordinate

= displacement on middle surface
= displacement in the z-direction
= stress function

= Young modulus

= stress resultant

= transvers stress resultant

= stress couple

= shell radius

= loading angle

= crack angle

= Poisson modulus

= polar angle

= surface fracture energy density.
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