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STRENGTH ANISOTROPY AND THE T-CRITERION
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In the present paper an application of the
T-criterion of fracture is presented for the
case of materials showing different strengths
in tension and compression. The yield locus,
necessary for the application of the T-
criterion is computed by means of the Para-
boloid Failure Condition (PFC). The results
obtained agree well with existing
experimental data.

INTRODUCTION

Formally plastic flow is connected with shear stresses
and fracture with normal stresses. In energy terms the
above statement is equivalent to that distortional
strain energy density is responsible for yielding whilst
dilatational strain energy causes brittle fracture. The
first clause of the statement is globally accepted as
the Mises yield condition, while a combination of both
clauses constitutes the so-called T-criterion [1,2,3].
This criterion states that the distortional part, TD’
of the total strain energy density, T, developed in the
material by the external loads creates a plastically
deformed enclave around the crack tip defined by the

* Department of Engineering Science, National Technical
University of Athens

433



FAILURE ANALYSIS - THEORY AND PRACTICE - ECF7

equality TD=TD,O and the remaining dilatational strain energy
density, TV’ computed along the elastic-plastic boundary, causes
crack initiation, provided that its amount is at least equal to a
critical level, TV,O’ which is considered as a material constant.
Hence, two material constants are involved in the phenomenon of
failure i.e. TV,O and TD,O describing the inherent tedency of the
material to fracture or yield. In addition a conservation principle
concerning the mechanical energy density quantities obviously
holds, i.e. TV+TD=T(=TV,0+TD,O at the onset of crack propagation).

However, an idealization is incorporated in the above
discussion. Really, the Mises yield condition necessitates a
symmetric behaviour of the materials with respect to tension and
compression stresses. But, almost all the materials are not
symmetric showing various types of anisotropy. The commonest one
is the strength differential effect (SDE) implying that the
strength in tension is different (usually smaller) from the
strength in compression. This effect is usually strong in brittle
materials, weak in ductile ones and negligible in extremely ductile
materials which assumingly follow the Mises yield condition.

To account this effect an advanced yield condition must replace
the Mises condition. Such a suitable criterion sensitive to the
SDE-anisotropy and which was shown to predict with high accuracy
the yielding behaviour of a large range of materials, from highly
brittle to soft and ductile polymers is the Paraboloid Failure
Condition (PFC) [4,5). This condition will be used in the present
parer 1in conjuction with T-criterion to predict the behaviour of a
cracked plate of a ductile material showing SDE.

STRENGTH DIFFERENTIAL EFFECT AND THE T-CRITERION

In the 3-dimensional stress space (01,02,03) the yield surface for
a material showing the Strength Differential Effect is according
to the Paraboloid Failure Condition [5]:

(01-02)2+(02-03)2+(o3-01)2+2(01+02+03)(UOC-GOT) = ZOOCOOT (1)
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where Opc29T are the yield strengths of the material in uniaxial
compression and tension, respectively.

Equation (1) can also be written as:

!§EL[°§+°§+°§'°102'°2°3'o3°1+(01+°2+°3)(OOC'UOT)] = 5 oc%r (2)
where (E,v) and the Young's modulus and Poisson's ratio of the
material, respectively.

Equation (2) 1in case of materials not showing SDE (i.e. 00T=OOC)
simplifies to the Mises yield condition TD=TD,O' It is reasonable
to assume that in presence of SDE the same as above Eq.(2)
represents the amount of strain energy density required for
yielding, i.e.:

_ _ 1+v
Ty = Ty,0 = 3F 9%cY%rT (3)

where Ty 0 is a material constant.

It must be noted that the quantity TY is not the distortional
component of the total strain energy density but it acts on the
material in the same, as TD’ way causing yielding. According to
the assumptions of PFC, T_ is constant when evaluated along the
elastic-plastic boundary in a material defined by the PFC yield
condition.

The total amount, T, of strain energy density developed by the
external loads is independent of the failure behaviour of the
material. It depends only on the generalized Hooke's law.
Consequently, it is valid:

T = TyHTy = T 4T, (4)
where Tf is the remaining in the loaded material strain energy
density, not consumed in plastic deformation. If fracture of the
material 1is to be obseryed, it must be caused in expenses of T
Hence, the statement of the T-criterion suitable for materials

showing the strength differential effect is obvious. Namely:
i) A crack will propagate to the direction where Tf possesses a

£°
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maximum, Tf m
ii) The crack initiates when Tf " is at least equal to a
critical quantity, Tf o> Which is considered as a material constant.
iii) Tf is computed along the elastic-plastic boundary as it is
described by the condition T =T ., where T is a material
# A Y50

constant.
Algebraically we have:

(r,0) =T

T, i) h0 Te(r(0),6) oo 2 THL0 (5)

0

Obviously, the above statement is ident?ca] to that of the
original T-criterion as it was proposed for isotropic materials
[2,3,6] , but with Ty in place of TD and Tf in place of Tv. These
two energy-density components (Ty and Tf), although they are not
coinciding with distortional and dilatational strain energy
densities, act on the material like TD and TV causing by definition
yielding and fracture. In addition, they reduce to TD and TV in
the case of an isotropic material.

A different approach to the same problem was presented in refs.
[7,8] where the introduction of the constant term in the ox—stress
component modified slightly the results. In addition, in ref.[7]
the connection between T-criterion, PFC and physical mechanisms of
ductile fracture was pointed out.

APPLICATION OF T-CRITERION IN CASE OF SDE-ANISOTROPY

Consider a thin plate of a ductile material, showing different
strengths in tension, 907> and compression, 9%c and the respective
ratio, R, being:

. Joc

o
0T
The plate contains a straight crack of length 2a which is

inclined with respect to the axis of the uniaxial loading by an
angle B (Drawing embedded in Fig.1). Generalized plane stress
conditions are assumed.

R 21 (6)

The singular stress field around the crack-tips is given by
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relations of the form:
Kg ( Ky K1 (
o, = f (6,u) , o, = f.,u) , T, = f . (6,u)
X Jmr X Yy e Y Y e W

(7)
where (r,0) are the polar coordinates centered on the crack tip,
u=KII/KI=cotB and KI’KII are the mode-I and -II stress intensity
factors. Functions fx(@,u),fy(e,u) and fxy(e,u) are well-known and
can be found in ref.[1].

The PFC condition, Eq.(1), in the case of plane stress and after
introducing the parameter R, takes the form:

2, 2 2 -

ox+oy-oxoy+3txy+(ox+oy)(R-l)—R =0 (8)

where, now the stresses Gx’oy’txy are divided by 97>

Equation (8) is equivalent to the first of Egs.(5) and by
solving it, one can derive the function r=r(0) which describes the
elastic-plastic boundary around the crack-tip. This latter function

is: 2 2 .4
() = r(®) _ %or® *'" Bf(R-l)f +/ (R-1)2F2+4RF ’ (9)
e a I v VD

where:
§ = 53? o fy = F(8,u)+f (0,u)

2 > (10)
fp = F (@) el (0,u)-F, (8,u)F (0,1)+3F (6,u)

Taking into consideration Eqs.(4) and (2) and that in case of
isotropy the dilatational component of the strain energy dnesity

i
_ 1-2v 2
Ty = g (oxtoy) (11)
we obtain:
_1-2v 2 2 _
Te = g6 Oorlloy*oy) - (o +o ) (R-1)} (r2)

Eqs.(9) and (12) and the second of Egs.(5) yield:
i 2 .2
T sfvs1n BJ(1-2v)sts1n B

AT U 4/pTET

0]

[@o )]

Tf -

w,
m

o Y (R-l)} (13)
N
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Equation (13) for any given pair (8,R) possesses a maximum value
(Tg’R)max at the direction 60, towards which the crack is expected
to propagate. The corresponding value of the reduced stress at
infinity necessary to cause crack propagation in case of ductile
materials is according to the T-criterion [9]:

i
B -90° 3
9f,R _ (Tf,R)max (14)
90° (1% )
Uf,R f,R’max
Hence, from Eqs.(13) and (14) the two quantities 60 and o? R

characterizing crack initiation in ductile materials showing SDE-
anisotropy can be derived.

Really, in Fig.1 the value of the expected crack propagation
direction, 90, is plotted versus initial crack inclination B. As it
can be seen in this figure, angle Go is a single function of B
independent of R. It implies that in materials showing the specific
anisotropy we are studying, the expected direction of crack
propagation is insensitive to the different strengths in tension
and compression. It is easily understood since the location of
(TE’R)max depends on the location of the minimum value of the
radius of the elastic-plastic boundary, which remains constant
regardless the value of R, as it can be seen in Fig.2, where the
shape of the elastic-plastic boundary (Eq.(9)) is plotted. An
interesting remark derived from Fig.2 is that the size of the
plastically deformed zone increases with R, the other parameters
remaining constant. This conclusion seems paradoxical since
increasing R corresponds to an increase of the brittTeness of the
material, However, the failure loci (Fig.3) according to PFC for
plane stress conditions (Eq.(8)) imply that
in the first quarter of the plane (01,02) the
yield condition is fulfilled with Tower stresses when R increases
and, consequently, for the same stresses the extent of the
plastically deformed zone increases with R.

In the next Fig.4 the value of critical stress for fracture

438



FAILURE ANALYSIS - THEORY AND PRACTICE - ECF7

UE,R’ reduced to the respective value for B=90° is plotted versus
crack inclination, B, for four different values of R. This quantity
increases as angle B decreases for all values of R. The increase is
stronger for higher values of R, a conclusion conforming with the
expected behaviour of materials of increasing brittleness. The
above results fit well with the experimental data for two ductile
materials, one with Ral and another one with Ra1.05 [3].

A final remark is worth at this point. From Eq.(12) or (13) it
is easily concluded that Tf may become negative for certain
combinations of B,R,0. The upper limits of R for non-negative
(Tﬁ’R)max—values are plotted in Fig.5 versus Poisson's ratio, v,
for three representative B-values. From this figure it can be
concluded that for v tending to 0.5, (TE,R)max tends to zero and,
so, fracture of such a material is impossible. In fact such a
material, with v=0.5, is in a state of perfect plasticity. On the
contrary materials with relatively small values of v, being
relatively brittle, can fracture in a more wide range of R-values.
However, the implied by Fig.5 inability of materials with certain
characteristic parameters (B,R,v) to fail by fracture deserves its
own study.
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Fig.1 Expected angle, G , versus Fig.2 Elastic-plastic boundary
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Fig.5 Upper limits of R versus
Poisson's ratio for T¢20.
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