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PROBABILISTIC PECULIARITIES OF CERAMIC BODIES FRACTURE
Ya,L,Groushevsky*

Fracture mechanics makes it possible to determine
with reasonsble accuracy the conditions of crack initi-
ation and propagation and to evaluate the strength and
lifetime of ceramic elements. However, application of
fracture mechanics is efficient only if the crack initi-
ation location is known. But, the latter is random for
ceramics due to statistical nature of its strength and
does not necessarily coincide with the maximum stress
zone, ~

The distribution function for random variables
which characterize the location and the moment of frac-
ture initiation in a ceramic body cen be obtained ba-
sing on the probability of a ceramic body fracture
which can be written using the work of Weibull (1).
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Here O =6 (r,t ) are strdsses at a point £ at the®
moment t , Op is the scale'parameter, M is the
Weibull modulus representing.the dispersion in the ma-
terial's ultimate strength values., The integral is es-
timated for the part of the body where stresses are po-
sitive, ’

The condition of crack initiation at the point F
of & body means that only a small volume of the materi-
al in the vicinity of this point fractures whereas be-~
yond it the integrity of the body is intact., The prob-
lem is solved by the methods of the probability theory
(Groushevsky (2)). For the case when 6(F,t) :.F(Fg.\fszt)
the fracture probability density at the given p int for
the known stress level is presented as
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while the probability of crack initiation at the given
point is

S lommda . T F)
F)=)4Fede= L1
f §0ﬂ “(F)dv

v,650

Hence, the probability of the body fracture at the gi-
ven point is determined by the stress digtribution, by

(3)

its strength ( @, parameter). It is clear that the
fracture probability density is the largest where the
stresses.are maximum, however in the less loaded po-
ints %& P ) # 0. At the uniform stress state

£ (® ) = const the fracture probability density is
the same in all the points and is equal %o /v .

As an example let us consider a beam in three-po-
int bending (Fig.1a). With the account taken of the
beam symmetry, its stress ifate is described by the

function 6 (X,4) = Gy’ . 3 « Therefore the
fracture probaebility density
2
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is represented by the surface in Fig.2, It follows
from Eq.(4) that the function meximum value increases
with an increase in m , whereas the brobability of
fracture beyond the maximum stress zone decreases,
With an unregtricted increase in M the function 06(:1:,3)
tends to -function,

Figure 1b presents a correlation between the empi-
rical function of the coordinate distribution for
cracks (symbol " o M) that caused fracture of the cera-
mic beam specimen tested for strength, and the theoreti-
cal function (dash line)

x h
() = 5 OS&({ 4)drdy

1199



FAILURE ANALYSIS - THEORY AND PRACTICE - ECF7

Here parameter M is determined from the scatter of
the ultimate strength. Fair agreement of the results
proved the possibility of describing the probabilistic
regularities of fracture with distribution (2). Thus,
distribution (2) which from the probabilistic stand-
point determines not only the stress level at which
fracture will occur but also the location of fracture,
is a generalized Weibull distribution.
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