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ON THE RELIABILITY OF FINITE ELEMENT J-INTEGRAL
EVALUATION IN FRACTURE ANALYSIS

B.B. Sabir x

Several finite element idealisations are
used to determine J values for a number of
crack geometries. The specimens are
represented by regular and graded
rectangular isoparametric elements with or
without singularity crack tip elements.
The path independency of the J values is
investigated and convergence studies on
the results are carried out. It is
concluded that accurate estimates for J
can be obtained using simple meshes which
can easily be generated automatically.

INTRODUCT ION

The use of the J-integral in linear elastic and elastic
plastic fracture analysis has received considerable
attention 1n recent years. Although some expressions
have been developed for standard test specimens,
obtaining solutions for J in actual components appears
to be difficult and 1t is generally necessary to use
finite element methods. The attractiveness of the
J-antegral approach lies in the fact that the integral
1s path—independent and thus enables one to choose a
path remote from the tip of the crack and avoid the
steep gradients of the strains in that vicinity. In the
determination of J by the finite element method,
therefore, 1t may be considered unnecessary to employ
special elements at the crack tip which more accurately
characterise the singularity conditions there. Moreover,
Provided that the plastic zone at the crack tip is not
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too large, one may justify an elastic analysis on the
grounds that at sufficiently large distances from the
crack tip, the material behaves elastically and that it
is not affected significantly by the plasticity there.
This would be attractive to practicing engineers, as
elastic-plastic analysis is much more complicated.

In practice, however, the path independency of J
cannot always be guaranteed. This appears to be
influenced by the finite element mesh employed in the
analysis. Considerably smaller elements are required
near the crack tip and many workers have used element
topologies requiring a considerable amount of data
preparation. It would clearly be advantageous to be able
to use wuniformly graded meshes which can easily be
generated automatically. In the absence of analytical
solutions, for guidance, it is necessary to carry out
convergence studies before reliance on the results can
be assumed. It is felt that this can only be effectively
made by the employment of uniform meshes.

THEORETICAL CONSIDERATIONS

Following the Westergaard method of stress analysis, the
solution for the stress intensity factor for an infinite
plate containing a central, through thickness, sharp
crack of length 2a is given by

K =0 (na)é (1)

Where o is the remote applied tensile stress.

For a practical specimen of finite dimensions the
above expression is modified by incorporating a
correction factor which is obtained from a stress
analysis of the cracked geometry. A general form of the
expression for the stress intensity factor is

K =Co (ua)é (2)

Where C is the correction factor which is a function of
a/W . W being the width of the plate and ‘a“ half the
crack size for an embedded crack and the full crack size
for an edge crack. Expressions for C have been developed
for different geometries and some of these will be cited
in the next section.
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lrwin demonstrated that for linear elastic fracture
mechanics (LEFM) conditions, the elastic stress field
approach 1is equivalent to the Griffith energy balance
concept and that the strain energy release rate G 1is
related to the stress intensity factor by

=€ 6 (3)
Where = E for plane stress
and E° = E/(1 - uz) for plane strain

Another concept as a fracture criterion, which is
based on energy balance principles, is the J—integral
that was first introduced by Rice. For a two dimensional
crack problem this is given by

J = - dP/da (4)

wWwhere P contains the elastic strain energy of the
cracked plate and the work done by the external forces.
Under LEFM conditions J may be viewed as the energy
available for crack extension which 1s equivalent to G,
the strain energy release rate.

Rice defined J as an integral quantity evaluated
along a path, enclosing the crack tip, which has initial
and end points lying on the two crack flanks. This 1is

K4
[=8
8
5

J = Ir W dy — 1

o
X

In this expression, W 1g the strain energy density,
1 the traction vector on a plane defined by the outward
normal and u is the displacement vector.

Using the above relations, it 1s possible to
calculate the stress intensity factor K indirectly from
G or J. The J—integral concept 1s useful because 1t can
also be used for nonlinear elastic behaviour provided
that no unloading takes place 1n any part of the
material. Furthermore, using the deformation theory of
plasticity, J can be extended to model elasto-plastac
behaviour of a material. From a computational view
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point, the J-integral concept ijig attractive because the
value of g is independent of the path chosen Provided
that the initial and end points of the path are on
Opposite faces of the crack and that the crack faces are
stress free. This path independency allows a calculation
to be made along a contour remote from the crack tip,

Plasticity there. Because J can be considered as an
elastic-plastic energy release rate, there must be a
critical value, Jc » which predicts the onset of crack

extension. This 1s analogous to G_ in LEFM.

CRACK GEOMETRIES
=R DEUMETRIES

Finite element analyses, employing 8-noded 1soparametric
elements, were carried out to Compute J values for the
crack geometries shown in figure 1. These, together with
their corresponding correction factors C (equation 2) §
given by Ewalds and Wanhill (1), are given below

(a) Single edge cracked Specimen (SECS)

C=1.12 - 0.231 asw + 10.55 ta/w)=
T 21.72 (a/W)T+ 30.39 (a/w)* (6)

This solution which is due to Brown and Srawley is
accurate to within 0.5%Z for asw < 0.6 .

(b) Double edge cracked Specimen (DECS)

W
% ;
C =1L (tan ma/w + 0.1 sin 2na/W) | (7)
m a
Which 1s due to Irwin.
(c) Centre cracked specimen (CCS)
C=1+0.25 a/w - 1.152 (a/w)=
+ 12.20 (a/w)> (8)

Due to Brown and is accurate to within 0.5% for a’/W
£ 0.35 .
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SOLUTION PROCEDURE

Numerical solutions for the crack geometries shown 1in
figure 1 were obtained wusing 8-noded plane stress
isoparametric elements and a range of regular and graded
meshes. Due to symmetry only one—half of SECS or
one—-quarter of DECS and CCS was analysed. In order to
study the convergence characteristics of the results,
the part-specimen analysed was divided into 8x4, B8x6,
8x8, 16x6 and 16x8 rectangular elements. In this
description the first figure refers to the number of
equally spaced elements in the width direction and the
second refers to the number of elements along the
half-length of the specimen.

Three solutions were obtained for each geometry. In
the first the specimen was divided into elements which
were identical in size and were all of the conventional
type. The second solution was obtained using the same
mesh but with enriched crack tip elements which contain
the appropriate singularity associated with LEFM. Thas
was achieved by moving the middle nodes of the sides
meeting at the crack tip to the quarter positions. In
the third solution a graded mesh with enriched crack tip
elements was employed in which the elements reduced in
size as the line containing the crack was approached.
Figure 2 shows the graded mesh idealisation for the 8x8
mesh. The specimens analysed had aspect ratios 21/W = 4
and Poisson’s ratio was 0.3 .

RESULTS AND DISCUSSION

J values were computed along several paths such as those
shown in figure 2 for the 8x8 mesh. From these
correction factors, C, were obtained through the use of
equations 2-5 . Convergence curves for the SECS using
the three procedures outlined in the previous section
are given elsewhere (2). There, it was shown that
accurate solutions were obtained using a graded mesh of
8x8 elements with enriched singular crack tip elements.
Figure 3 gives the non—dimensional parameter C as the
crack size i1s increased. 1t can be seen that, except for
very small cracks, good agreement with the analytical
solution of equation & is obtained. This is surprising
when considering the large crack tip element sizes
employed in the analysis.

In figure 4 the results for the SECS with a/W = 0.5
are given for several contours enclosing the crack taip.
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Here r is defined as the average distance from the crack
tip to the three lines describing half the contour
adopted for the evaluation of J. The results demonstrate
that path independency of the J-integral can be
confirmed using the idealisations (with crack tip
elements) employed in the present analysis.

Figqure 5 gives the convergence characteristics for
the DECS, with a/w = 0.25, for the three idealisations
employed in the present study. The results are expressed
as  a function of the total number of degrees of freedom
used 1in each analysis. The corresponding rectangular
meshes are also shown. The results presented here are
those obtained from contours furthest away from the
crack tip. It can be seen that convergence is rapid and
that significant improvement is obtained when
singularity elements are employed in the idealisation.
In figure 6 the results are shown as a function of the
crack size wusing graded meshes with singularity crack
tip elements. It can be seen that good agreement with
the analytical solution is obtained.

The results for the CCS are given in figures 7 and
8. It can be seen, from figure 7, that considerable
improvement in the results is obtained if the regqular
mesh  is replaced by a graded one with smaller elements
near the crack-line.

CONCLUS 10N

The work presented in this Paper shows that, for linear
elastac analyses, 1t 1s possible to obtain accurate
estimates of J using unitformly graded meshes in  which
the elements are not focussed onto the crack tip.
Despite the large size of the elements containing the
crack tip, used 1n the present analysais, considerable
1mprovement in the results 1s obtained by moving the
mid-side nodes of these elements to the quar ter
positions.
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